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Abstract

This paper studies the effectiveness of collusion in the DRAM cartel. Like other high technology prod-

ucts, DRAM is characterized by learning-by-doing and multiproduct competition. I hypothesize that

collusion is more difficult to sustain on a new generation, where learning is high, than an old generation,

where learning is low. A higher learning rate makes defection from a collusive equilibrium more attractive

by reducing future cost. Empirical analysis exploits variation between cartelization and competition to

estimate the change in firms’ output decisions on each generation. Consistent with the hypothesis, cartel

participants are estimated to cut output more on the oldest generation than newer generations. Output

decisions on the newest generation also show evidence consistent with defection from collusive equilibria.

Lastly, the paper presents a theoretical framework to analyze collusive equilibria with learning-by-doing

and multiproduct competition. The model motivates various pieces of evidence that competition author-

ities can compile to guide antitrust investigations in high technology markets.
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1 Introduction

Innovation is the foundational element of competition for a wide variety of high-technology products. It is

particularly noteworthy that recent years have seen a steady discovery of price fixing cartels in dynamic,

innovation-intensive industries: electrical auto parts, capacitors, LCD panels, cathode ray tubes, disk drives,

and three different types of memory chips.1 Some of these markets feature characteristics long known to

enable collusion, including high barriers to entry and cooperative research and development. Yet they also

share two additional characteristics less familiar in the academic literature on collusion. First, manufacturing

displays learning-by-doing: a firm’s cumulative output reduces the marginal cost of its future output. Second,

firms steadily release new product generations based on technological advancements, such as those predicted

by Moore’s Law. Product generations with varying qualities therefore overlap on the market.

To study how firms collude in a high-technology industry with these two features, this article examines

firm behavior during an illegal price fixing cartel in the Dynamic Random Access Memory (DRAM) market.

Specifically, I hypothesize that collusion is more effective on older product generations than newer ones. To

explore this hypothesis, consider that producing a unit of output on one product reduces its future cost.

But the rate of cost decrease depends on whether the product is old or new. In an older product, because

engineers have spent years engaging in trial-and-error, the learning rate is low. But in a newer product the

learning rate is high. The faster is the learning rate, the more firms gain by defecting from collusion, and

the more patient they must be to sustain it. These ideas are later formalized in a simple theoretical model.

Like numerous international cartels, the DRAM case also featured a fringe of smaller firms outside of the

cartel agreement. The empirical model utilizes the presence of an exogenously competitive fringe to generate

a testable hypothesis. The more effective is collusion on a product, the more the output of the fringe expands

relative to the output of members. The key empirical hypothesis of the paper is that during the cartel, the

fringe gains more share on the old generation than on newer generations.

DRAM production is a classic example of learning-by-doing: output allows firms to reduce cost-per-chip

by reducing the rate of defective chips in manufacturing. The learning process repeats as chip generations are

1Fines from these cases are among the largest in U.S. antitrust history. AU Optronics, LG Display, and Samsung Electronics
have each received penalties of $300 million or more since 2006: http://www.justice.gov/atr/public/criminal/sherman10.

html.
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released every two to three years, with long product life cycles creating overlapping generations. Moreover,

the discovery and eventual antitrust litigation on the cartel has created evidence on its duration, participants,

and non-participants.

To identify the output decisions of fringe versus cartel members, I construct a reduced form model that

predicts firm output. The model exploits two levels of variation: conduct changed across time, and some firms

joined the cartel while others did not. This permits a “difference-in-differences” estimate: the average change

in members’ output during the cartel period less the average change in non-members’ output, separately for

each generation.

Descriptive statistics show that the price of the 16Mb generation rose up to 25% during the cartel,

whereas the price fell for the newer 64Mb and 128Mb generations. Consistent with the hypothesis, the DiD

model estimates that cartel members reduced output by more on the 16Mb generation than the 64Mb and

128Mb generations, at a significance level of up to 1%. Although it is more challenging to estimate by how

much cartel members reduced output on a single generation, the model’s estimates can be used to construct

a 95% confidence interval for total output reduction on the 16Mb generation between 3.1% and 24.6%.

To better understand the mechanism driving these results, I also formulate a straightforward test for

defection from collusive equilibria in learning-by-doing industries. This test relies on the high correlation

between each firm’s order of entry into a generation and its subsequent market share ranking on that

generation. If an unsuccessful attempt to collude stems from realized deviation by one or more firms, then

there is basis for the correlation between order of entry and subsequent ranking to fall. This test shows that

the correlation of 0.43 was significantly lower for the 128Mb DRAM generation than any other generation

in the sample. The finding is consistent with the underlying hypothesis that collusion is most difficult to

sustain on the newest generations during a cartel.

Literature Discussion This study’s primary contribution is to generate empirical evidence from a cartel

in a highly innovative market. It focuses on the classic problem of how cartels meet incentive compatibility

constraints (Porter, 1983; Ellison, 1994; Levenstein, 1997; Scott Morton, 1997; Genesove and Mullin, 2001;

Roller and Steen, 2006; Mariuzzo and Walsh, 2013; Clark and Houde, 2013, 2014, and Igami and Sugaya,
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2017).2 Many of these studies test canonical models of repeated games by exploiting the historical legality

of cartels. Consequently, they are geared toward industries with straightforward supply functions, such as

those in railroads, sugar, and cement.

In contrast, the present study examines a modern, high-technology product market in DRAM. It shows

that a supply side dynamic can be the primary driver of incentive compatibility. de Roos (2004) uses a

dynamic oligopoly model to explain the lysine cartel through the lens of entry deterrance and post-entry

renegotiation. Similarly, this article shows that the dynamic incentives stemming from learning-by-doing

should be considered in characterizing the DRAM cartel’s behavior.

To assist in drawing more general insights, the paper also constructs a theoretical model of oligopoly

centered on a two-period game. Following Siebert (2010) and Fudenberg and Tirole (1983), firms choose

quantities in a learning period knowing that they gain a cost reduction as a function of output in a post-

learning period.3 This structure is then augmented to include vertically differentiated products and a col-

lusive strategy. The model motivates various pieces of evidence that competition authorities can compile to

guide horizontal investigations in high-technology markets.4

The remainder of the paper is outlined as follows. Section 2 and Section 3 describe the features of the

industry, the cartel, and the data. Section 4 estimates the empirical model and tests for alternative hypothe-

ses. Section 5 presents a model of collusion over the product life cycle, and summarizes its implications for

antitrust policy. I conclude in Section 6 by discussing the limitations and future work.

2 Cartel Operations

Most cartel cases end before jury trial, limiting the amount of public information about their evolution. The

DRAM cartel is noteworthy for leading to a federal criminal trial as well as civil class action trials. This

section summarizes what the trial record implies about the cartel’s timeline and its potential effectiveness,

which are important to understand before proceeding to empirical analysis.

2See Levenstein and Suslow (2006) for a broader review of empirical literature examining incentive compatibility in cartels.
3Gardete (2016) also models firms as choosing quantities in the DRAM market. Other quantity-setting models of learning

include Spence (1981), Ghemawat and Spence (1985), Dasgupta and Stiglitz (1988) and Cabral and Riordan (1997).
4Mookherjee and Ray (1991) also propose a model of collusion that includes scale economies and learning-by-doing, but only

a single product. The present model emphasizes the interaction between learning and multi-product competition.
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Figure 1: Events During Cartel Period
Sources: Noll (2014) and DOJ Press Releases

Figure 1 sequentially depicts the main events in the DRAM cartel. First, firm communication began in

response to excess capacity. Next, cartel members cooperated to raise price from at least the second quarter

of 1999 through the first quarter of 2001. From April through November 2001, however, they switched to

active price competition in a bid to eliminate South Korean firm Hynix from the market. After state-owned

banks bailed out the company, members reverted to the price fixing strategy until the DOJ issued a subpoena

in June 2002 (Noll, 2014).5

These events illustrate three distinct phases of firm conduct: the cartel’s first phase; the “Kill Hynix”

phase; and the cartel’s third phase. Empirical analysis will consider the dates corresponding to each phase

as fixed. The “Kill Hynix” phase is treated as competitive, and the other two as collusive.

During its operation, cartel members communicated to raise price in three ways: specific price quotes

to individual customers; general pricing levels across customers; and production volumes and inventories.

Mid-level managers directed their sales representatives to communicate with rival counterparts in quoting

prices to major OEMs. There is substantial email evidence documenting these price quotes, including a

5Communications between cartel members remained cooperative throughout these events, including the “Kill Hynix” period.
For example, on September 20, 2001 executives from two other members discuss Hynix’ position: ‘On the assumption that Hynix
gets new money, they would consider taking supply out of the market if others do the same.’ Third Amended Class Action
Complaint, MDL No. 1486, ¶ 214.
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reference to a shared spreadsheet that tracked different firms’ price targets. The evidence does not detail

any specific monitoring or punishment strategy, or identify instances of cheating.

The scope to make strategic output decisions, including those factoring in future cost reductions, was

likely limited to high-level executives. Senior executives held in-person meetings to discuss production figures

and supply reduction. These meetings appear to have been organized between executives of two or more

firms at a time rather than through a trade association or industry group. The evidence does not detail the

content of the meetings, except where it was later memorialized through email, as in this example:

Mr. Chang confirmed that [firms] ‘had reached an agreement ... to push up DRAM prices to US

$3 a chip by stopping dumping.’ — Third Amended Class Action Complaint, ¶ 203-214

Official plea agreements state that the effectiveness of collusion varied by product:

...at certain times during the Relevant Period, DRAM prices decreased significantly. Nevertheless,

the Defendant, or its Corporate Founders, and their coconspirators reached agreements to limit

the rate of price declines, which were achieved with varying levels of effectiveness.

— Plea agreement with [firm], March 22, 2006

The litigation record does not appear to link such statements to specific products or generations. The

most suggestive remark comes from defendants’ economic expert. Using price data from the market research

firm IDC, the expert testified that prices during the third phase of the cartel rose significantly more for the

16Mb generation than newer ones. Testimony does not appear to analyze why such disparities may have

arisen across generations, which motivates the present study.6

3 Data and Descriptive Evidence

I use a proprietary dataset from market research firm Gartner Research that lists quarterly shipments by

firm and density generation, and quarterly market price by density generation, for all firms in the DRAM

market from 1974-2011. Firm names allow accurate tracking of mergers, entry, and exit throughout the data

sample. Separately, Gartner research reports list the quarterly worldwide PC shipments from 1997 onward.

I consider the overlap of these two datasets, which spans from 1997-2011.

6The transcript of cross examination on this point is included in fig. D1.
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(a) (b)

Figure 2: DRAM Price Trends: Cartel Active Periods Shaded

To gauge preliminary evidence, it is useful to consider the DRAM price during and after the cartel period.

Figure 2 depicts this trend in two different ways. Panel (a) is the log of the module price, separately for each

generation. Panel (b) standardizes the price level of each generation by its value in the the first quarter of

1999, prior to the official start of the cartel. During the first phase of the cartel, the price of the 16Mb chip

rose up to 25% above its starting value. After the cartel ended, the 16Mb price declined, whereas the 64Mb

and 128Mb price increased.

This pattern is consistent with a hypothesis in which the 16Mb price transitioned from a collusive to

a competitive value after the cartel. However, price data suffers from small sample size because prices are

available only at the generation-quarter level. There are 10 data points for cartel prices in each generation,

and no firm-level variation. Consequently, I use firm-generation-quarter level shipments going forward.

Figure 3 represents several long-term trends in the DRAM market. Panel (a) depicts the total output

(across all firms) by generation. Output takes an inverse U-shape for each generation and the total output of

DRAM increased over time, consistent with increasing global demand for computers and electronics. Panels

(b) and (c) highlight that the industry became steadily more concentrated over time. Panel (b) shows that

the five largest firms accounted for an increasing share of industry revenues; (c) shows that with each new

generation, some firms failed to advance (the three cartel generations are shaded in black). In the analysis

that follows, I consider all active firms in each generation.7

7Appendix C also displays the market share evolution of the largest firms separately for each of the three cartel generations.
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(a) Total Output, by Generation

(b) Market Share, Select Firms (c) Number Firms Active, by Generation

Figure 3

The empirical analysis focuses on firm output during the cartel period. Cartel members are identified by

combining reports from the two largest antitrust authorities, the EC and DOJ, with additional firms named

in the private class action complaint. This yields 11 cartel members, and the remaining firms are taken to

comprise a competitive fringe. Table 1 summarizes the differences between cartel members and non-members

from 1998 through the end of the cartel period, 2002.

Table 1: Firm Averages by Cartel Membership, 1998-2002

N Firms∗ Total Share† Age (qtr)‡ Log Cum Output‡

1 0 1 0 1 0 1 0

16 11 11 0.76 0.24 26.2 20.2 12.5 10.6

64 10 9 0.90 0.10 14.0 8.9 11.4 8.9

128 10 6 0.97 0.03 7.7 4.8 9.7 6.7

∗ Sum across firms in group. † Mean across time, all firms in group
‡ Mean across time and firms
1 = cartel member; 0 = non-member.
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Members have higher average shares, older ages, and more cumulative output than non-members. For

this reason, the fringe is stronger the older is the generation. More generally, during the cartel period the

16Mb, 64Mb, and 128Mb generations accounted for 93% of total DRAM share by revenue.

Figure 4: DRAM Cartel Member Share by Generation

Figure 4 plots the time series of total member share relative to all firms in the generation, before and

after the cartel period. As reflected in the descriptive table, members have the largest share in the 128Mb

generation, followed by 64Mb and 16Mb. In each generation, the cartel member share tends to decline over

time, as smaller, later-arriving firms increase their production whereas larger firms eventually decrease it.

This graph highlights the need to account for each firm’s stage in the product life cycle of its generation.

(a) 16Mb (b) 64Mb

Figure 5: Cartel Member Shares, by Generation and Entry Group
Share = xet(1− αet)/ [xet(1− αet) + yetαet] , where e=entry group, t=quarter
x=total member output, y=total non-member output, α= nmembers / nall

To get a clearer picture, fig. 5 plots the cartel member share separately based on entry period for

(respectively) the 16Mb and 64Mb generations. Each graph groups firms into two categories: early and later

entrants. The cartel member share for each group is computed as the ratio of cartel member output to the
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sum of member and non-member output within the entry group.8 Conditioning on entry period shows that,

among the newer group of firms, member share reached its lowest point from 1998-2004 during the first

phase of the cartel, and rebounded afterward. This effect is present in both generations. It is not driven by

entry of new firms after the cartel started, as it excludes entrants to each generation on or after 1999-Q2.

The pattern in fig. 5 suggests that at least during the cartel’s first phase, certain cartel members reduced

output relative to outsiders on these two generations. However, the graph does not condition on cumulative

output. It also ignores the role of firm decisions across product generations and of demand. To account for

the effect of these variables, section 4 formulates a regression model that compares the output of firms in

the cartel to those outside.

4 Empirical Results

4.1 Empirical Model

For each generation of interest, the research design estimates the cartel’s effect on member output. This

challenge is pursued by exploiting two sources of variation. Firm conduct is hypothesized to change across

time: from competition to collusion, and vice versa. Firms are also hypothesized to differ in conduct: cartel

participants and the competitive fringe.

Index firms by i, generations by k, and time by t. The panel data specification is given by a DiD model

that accounts for the effect of accumulated output, cannibalization, and demand:

ln(qikt) =β0 + ln(xikt)β1 +

I∑
i=2

[
ln(xikt)× αi

]
βi

+ ln (qirt)ω1 + ln(PCt)η1 +

K∑
k=2

[
ln(PCt)×GenRankkt

]
ηk

+

k=3∑
k=1

{
1(Collkt)γk +

[
1(Collkt)× 1(Membi)

]
γk+3

}
+ νt + εikt

(1)

8The caption also conveys that the output for non-members is weighted by the ratio of the number of firms inside to outside
the cartel within the entry group at any time. This weighting standardizes to a per-firm level if the number of cartel members
differs from the number of non-members. It also controls for the effect of any firm exiting the generation, which can occur in
the final quarters of an older chip like 16Mb. Results are similar without weighting.
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The first line models the effects of accumulated output, which leads the firm to increase current output.

Denote ln(xikt) = ln
(∑t−1

τ=1 qikτ

)
the log of cumulative output accrued by firm i on k at t− 1, and αi firm

fixed effects. The last term in the line interacts log cumulative output with firm fixed effects.

This specification restricts the effect of accumulated output to be equal across generations for each firm.

This restriction is violated to the extent that firm learning changes over time, or firms experience significant

changes to capacity levels. Its plausibility is examined by testing for pre-cartel parallel trends, and by a

robustness test which considers a differential effect of cumulative output across the sample period.

The second line models the effect of cannibalization, which eventually leads the firm to reduce output; and

demand, which can increase or decrease its output. Considering cannibalization, ln(qirt) denotes industry

output on the succeeding generation r = k+ 1. The estimation of cannibalization is discussed further below.

Considering demand, define ln(PCt) as the log of worldwide PC shipments at t. The last term interacts

this measure with GenRankkt: fixed effects for the ranking of each generation from newest to oldest at t. PC

shipments constituted the primary application for DRAM during the sample, and are taken as exogeneous

to the supply of the component as in Igami (2017).9 Because the marginal value of a frontier generation

could be greater for new than old PCs, this specification allows an exogenous shift in demand to vary by

generation ranking.

The regressor ln(qirt) is expected to be endogenous because of unobserved factors in firm output that

influence both ln(qirt) and the dependent variable ln(qikt). These include temporary changes to a firm’s

costs such as plant outages or financial shocks in the home country. For example, a power outage at a

Japanese plant forced Toshiba to cut its flash memory production by up to 20% in Q1-2010.10

To account for endogeneity, ln(qirt) is instrumented by the elapsed quarters of shipment of firm i on r,

denoted FirmAgeirt. FirmAgeirt is positively correlated with ln(qirt) over the relevant portion of r’s life

cycle. The condition for instrument exogeneity assumes that the initial release (the first quarter of positive

output) on r is not impacted by cost shocks. This condition is more likely to hold in the semiconductor

industry than others, because the predictable nature of Moore’s Law permits multi-year forecasts, and each

firm begins a new generation with de minimus production.

9Highlighting the importance of PC shipments, fig. C2 shows that there is little correlation between the release dates of
major Windows operating systems and DRAM output, except through PC growth.

10See https://ca.reuters.com/article/technologyNews/idCATRE6B865620101209.
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Finally, the last line estimates the effect of the cartel on output. 1(Collkt) equals one for each cartel

generation during collusive periods, and 1(Collkt)× 1(Membi) equals one for cartel member firms in those

periods. The three parameters {γ4, γ5, γ6} estimate the effect of the cartel on k, and νt denotes quarter-of-

year fixed effects.

4.2 Primary Results

To begin working with the empirical model outlined above, I estimate a “pre-treatment” version of the linear

regression model in equation 1. This specification treats γ as the vector of dummy variables estimating the

effect of future cartel membership prior to the start of cartel. If the data meets the parallel trends condition

of the DiD model, there should be no effect of future membership on firm output. This test can be conducted

for two generations, 16Mb and 64Mb, which were active prior to the start of the cartel in 1999.

Table 2 displays the results of the regression model estimated by OLS and 2SLS. The OLS specification (1)

does not include interactions between firm fixed effects and log cumulative output. Both OLS specifications

estimate a negligible effect of LogOutputk+1 on LogOutputk. In contrast, 2SLS specification (3) instruments

firm i’s output on k + 1 with elapsed quarters of i’s output on k + 1. Consistent with cannibalization, the

estimate in (3) implies that if i doubles its output on k+ 1, it reduces its output on k by an average of about

10%. The instrument is strongly correlated with the endogenous variable (table C1 summarizes the full first

stage estimates).

By accounting for cannibalization, specification (3) also estimates a higher log cumulative output effect

than specification (2). A heuristic exercise can help assess its plausibility: assuming single-product static

quantity-setting, symmetric firms, linear demand, and an approximately unit market elasticity, a cost reduc-

tion of 15-25% corresponds to an output increase of 30-50% with 18 firms.11 The 44% coefficient estimate

falls within this range. Similarly, observe that the effect of PC shipments varies significantly by generation

rank as hypothesized. A 1% increase in PC shipments leads to a 0.48% increase in firm output on the

newest generation, when production is ramping up. The magnitude of this effect rises for the second- and

third-ranked generations, which are typically in the peak of their product life cycles.

11There were an average of 18.25 firms active across the sample period. Gardete (2016) and Siebert (2010) both estimate
market-wide DRAM elasticities near -1, and Irwin and Klenow (1994) estimate DRAM learning at 20% across generations,
though it varies from 10-27%.
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Table 2: Estimates of Future Cartel Membership Status on Log Firm Output:
During Pre-Cartel Years

OLS 2SLS

(1) (2) (3)

Constant -9.407 (2.584) -5.035 (2.482) -3.735 (2.643)

Log Cum Output† 0.420 (0.041) 0.366 (0.040) 0.436 (0.056)

Log Outputk+1
‡ 0.029 (0.021) 0.002 (0.019) -0.096 (0.041)

Log PC Ship 0.816 (0.153) 0.586 (0.147) 0.481 (0.161)

Log PC Ship × Gen Rank2 0.030 (0.010) 0.043 (0.011) 0.051 (0.012)

Log PC Ship × Gen Rank3 -0.001 (0.013) 0.030 (0.014) 0.055 (0.017)

Log PC Ship × Gen Rank4 -0.069 (0.013) -0.035 (0.013) -0.001 (0.019)

Log PC Ship × Gen Rank5 -0.100 (0.014) -0.072 (0.015) -0.038 (0.018)

I(1997)16 0.168 (0.193) 0.532 (0.311) 0.519 (0.324)

I(1997)16 × I(Memb)16 0.271 (0.176) 0.055 (0.350) 0.102 (0.371)

I(1998)16 -0.054 (0.206) 0.174 (0.216) 0.222 (0.225)

I(1998)16 × I(Memb)16 0.413 (0.257) 0.254 (0.244) 0.289 (0.249)

Wald { 97 × I(Memb) + 98 × I(Memb) = 0 } (0.060) (0.570) (0.501)

I(1997)64 -0.520 (0.182) -0.094 (0.213) -0.010 (0.238)

I(1997)64 × I(Memb)64 0.559 (0.241) 0.127 (0.263) -0.069 (0.261)

I(1998)64 0.203 (0.256) 0.549 (0.206) 0.480 (0.262)

I(1998)64 × I(Memb)64 0.512 (0.247) 0.126 (0.222) -0.044 (0.272)

Wald { 97 × I(Memb) + 98 × I(Memb) = 0 } (0.003) (0.526) (0.802)

rk Wald F Stat∗ 139.76

Firm FE × Log Cum Output N Y Y
Quarter FE Y Y Y

R-squared 0.592 0.686 0.660
N 2,387 2,387 2,387
Clusters 136 136 136

Coefficients and standard errors displayed. Standard errors clustered at firm-generation level.
† Effect of log cumulative output is given for average firm.
‡ (2) instruments Log Outputk+1 with elapsed quarters of firm i’s output on k + 1
∗ F statistic valid for clustering at firm-generation level, based on Kleibergen and Paap (2006).
The dependent variable is logged firm-level output of DRAM units. I(Year)k × I(Memb)k estimates the yearly
difference in output for future cartel members relative to non-members in generation k. Sample for each re-
gression is restricted to firm shipments within first 12 years of generation activity and at least 1000 units of
quarterly shipments.
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To account for the possibility of serially correlated errors, standard errors are clustered at the firm-

generation level. 2SLS estimation fails to reject the null hypothesis of no pre-cartel difference in trend

between members and non-members. As another specification test, I relaxed the model’s restriction that the

effect of cumulative output is equal across all generations for each firm. Table C2 displays the results of a

subsample test with the added interaction terms Log Cum Output × Firm × 1(Post), where 1(Post) = 1

if the generation is among the last four. For most firms in the dataset, table C2 shows small changes in

the effect of cumulative output in the last four generations. This suggests that the model is appropriately

specified.

Table 3 presents the results of the model that replaces pre-cartel trends with collusion indicators. In

interpreting the results, it is instructive to focus on the difference between the coefficients of interest across

generations. Specification (2) estimates that member output in the 16Mb generation declined significantly

relative to non-members. In contrast, member outputs for the 64Mb and 128Mb generations cannot be

rejected as different from non-members. Two-sided Wald tests for equality between the 16Mb member

coefficient and the 64Mb and 128Mb member coefficients are rejected at 10% and 1% levels, respectively.

For several reasons, it is more difficult to estimate how effective collusion was on a single generation than

across generations. The coefficients of interest have relatively large standard errors. One cause is that for

each firm-generation pair, there were only 10 quarters in which the cartel was active. A second is that the

magnitude of output change during the cartel is expected to vary across its members when they differ in

costs that are correlated over time (e.g., Athey and Bagwell, 2008). This type of variation is consistent with

fig. 5, which shows greater relative output reductions for one group of firms than another.

If firms choose output levels (as in the theoretical model below), strategic substitution implies that a

decrease in output by cartel members is met with an increase by non-members. Consequently, the coefficient

estimates should be interpreted such that cartel members reduced output on the 16Mb chip by some amount

between (e−0.61 − 1) = −46% and 0%. The precise value depends on the slope of best response functions

between firms, which are not recovered by the model.

By assuming that the estimated member coefficient of 46% on 16Mb consists equally of a 23% output

decrease by member firms and 23% output increase by fringe firms, it is possible to construct a 95% confidence
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Table 3: Estimates of Cartel Membership Status on Log Firm Output:
During Cartel Years

OLS 2SLS

(1) (2)

Constant -3.061 (2.207) -2.181 (2.336)

Log Cum Output† 0.378 (0.040) 0.442 (0.057)

Log Outputk+1
‡ 0.002 (0.019) -0.084 (0.040)

Log PC Ship 0.472 (0.132) 0.392 (0.145)

Log PC Ship × Gen Rank2 0.044 (0.010) 0.050 (0.010)

Log PC Ship × Gen Rank3 0.021 (0.013) 0.043 (0.015)

Log PC Ship × Gen Rank4 -0.046 (0.012) -0.014 (0.017)

Log PC Ship × Gen Rank5 -0.079 (0.014) -0.048 (0.017)

I(Collusion)16 0.804 (0.125) 0.679 (0.182)

I(Collusion)16 × I(Memb) -0.712 (0.225) -0.611 (0.251)

I(Collusion)64 0.441 (0.214) 0.293 (0.211)

I(Collusion)64 × I(Memb) -0.213 (0.236) -0.021 (0.223)

I(Collusion)128 -0.231 (0.157) -0.117 (0.213)

I(Collusion)128 × I(Memb) 0.264 (0.196) 0.323 (0.233)

Wald { 16 × I(Memb) - 64 × I(Memb) = 0 } (0.099) (0.077)

Wald { 16 × I(Memb) - 128 × I(Memb) = 0 } (0.001) (0.005)

Firm FE × Log Cum Output Y Y
Quarter FE Y Y

R-squared 0.685 0.665
N 2,387 2,387
Clusters 136 136

Coefficients and standard errors displayed, with clustering at firm-generation level.
† Effect of log cumulative output is given for average firm.
‡ (2) instruments Log Outputk+1 with elapsed quarters of firm i’s output on k + 1.
The dependent variable is logged firm-level output of DRAM units. I(Collusion)k × I(Memb)
estimates the difference in output for cartel members relative to non-members during collu-
sion in generation k. Sample for each regression is restricted to firm shipments within first
12 years of generation activity and at least 1000 units of quarterly shipments.
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interval for net output change on the generation during the cartel period. Using the delta method to

approximate standard errors, total 16Mb output decreased by between 69,043 to 712,584 units, or 3.1% to

24.6%, during the cartel. Allocating a larger share of the 46% estimate to members’ output reduction shifts

this interval higher in absolute value.12

4.3 Other Empirical Explanations

There are alternative explanations for the above patterns that do not rely upon incentive compatibility

constraints. For example, cartel members in newer generations may have sought to lower costs rapidly

to prevent fringe firms from establishing share. Similarly, although there is documented communication

between sales representatives on 128Mb pricing, it is possible that higher level executives—who would take

learning-by-doing incentives into account—did not have enough volume data to negotiate broader terms.

Consistent with these scenarios, de Roos (2006) suggests that a price war in the 1990s lysine cartel could

have been caused by either attempted predation or building up market share prior to a future agreement.

To address such possibilities, I construct a test for defection from collusive equilibria by one or more firms

in learning-by-doing industries. Assume that firms select quantities with subsequently perfect monitoring.

If an unsuccessful attempt to collude stems from IC constraints, then the episode must have featured either

the threat of deviation or realized deviation. If realized, a deviating firm would expand its output relative

to rivals and, if detection is not sufficiently fast, overtake rivals who had initial leads. This type of “rank

reversal” is uncommon during the early years of a DRAM generation, so an increase in its level may be

observed for the 64Mb and 128Mb generations.

Figure 6 plots each firm’s order of entry into a generation against its subsequent output ranking during

the first four years of that generation’s life cycle.13 The scatterplots are shaded to indicate the density of

x-y pairs across quarters. The region of highest density tends to track a 45 degree line, reflecting a positive

correlational coefficient between the two variables. This pattern is weakest for the 128Mb generation. This

12Using a monthly dataset with proprietary manufacturer costs, direct purchasers’ economic expert estimated the average
output reduction at the industry level during the collusive periods. The model yielded a 95% confidence interval of -0.8% to
-13.6%. This appears to be the only estimate of the cartel’s effect on output conducted by either side during civil litigation;
the case was ultimately settled without verdict.

13For the 64Mb and 128Mb generations, the set of firms is limited to cartel members. The results are similar if all generations
are limited to cartel members.
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(a) r=0.78 (b) r=0.65 (c) r=0.74

(d) r=0.43 (e) r=0.70 (f) r=0.83

Figure 6: Firm Order of Entry against Subsequent Ranking, by Generation
r = sample correlation coefficient

strengthens the hypothesis that at least for the 128Mb generation, the regression results above stem from

IC constraints rather than alternative explanations.

One way to formalize this test is to run the following linear regression model:

OutputRankikt =β0 + EntryOrderikβ1 + κk × τt +

K∑
k=2

[
EntryOrderik × κk

]
βk + εikt (2)

The output rank and entry order are defined as above. The first interacted term denotes generation × time

fixed effects, which reflect the unit of observation being studied. The coefficient on the second interacted

term estimates the average correlation between entry order and output rank separately on any generations

of interest k.

Table 4 below presents the results of the regression using two different samples: specifications (1) and

(2) include all generations with at least 100 observations, dating to 4Kb. Specification (3) uses only those

generations adjacent to the cartel: 4Mb - 512Mb. Specification (1) estimates the mean correlation for all
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generations. Specifications (2) and (3) estimate the mean correlation across all non-cartel generations, less

the mean correlation of each of the two generations of interest.

Table 4: Output Rank Regressed on Entry Order, by Generation

All Generations Adjacent Generations

(1) (2) (3)

Constant 1.402 (0.114) 1.369 (0.113) 2.045 (0.188)

Entry Order 0.802 (0.017) 0.680 (0.032)

Entry Order × I(4 Kb) 0.918 (0.064)

× I(16) 0.910 (0.039)

× I(64) 0.798 (0.060)

× I(256) 0.932 (0.047)

× I(1 Mb) 0.815 (0.049)

× I(4) 0.716 (0.040)

× I(16) 0.596 (0.053)

× I(64) 0.721 (0.082) -0.081 (0.085) 0.030 (0.100)

× I(128) 0.364 (0.073) -0.438 (0.076) -0.321 (0.091)

× I(256) 0.661 (0.068)

× I(512) 0.802 (0.117)

× I(1 Gb) 0.715 (0.188)

Gen FE × Time FE Y Y Y

R-squared 0.625 0.613 0.428
N 1,590 1,590 781

Coefficients and standard errors displayed. Specifications (1) and (2) include all genera-
tions with at least 100 firm-time observations. (3) includes only 4Mb-512Mb generations.
In all specifications, 64Mb and 128Mb generations limited to cartel members, and all gen-
erations limited to first 4 years of observations. Ties in order of entry broken based on
initial output level.

In both (2) and (3), the coefficient of the 128Mb interaction is negative and significant at the 1% level. To

determine whether the larger or smaller sample is more appropriate, I conduct an F-test for the joint equality

of coefficients on all non-cartel generations. The null hypothesis of equality is rejected if all generations are

included (as in (1)), but fails to be rejected if only 4Mb-512Mb generations are included (p-value=0.38).

This suggests that the regression sample should be limited to generations adjacent to the cartel, at the cost

of a smaller sample size. More distant generations are more likely to differ in the number and type of firms,

which likely impacts the relevant correlation.
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It is also important to test the model’s sensitivity to the chosen time period for the expansion phase of a

generation’s life cycle. Because the test assumes that each firm is increasing its output, a longer time period

increases noise if some firms begin to cut output on k to mitigate cannibalization on k+ 1. The time period

above is chosen as four years, and the results are not sensitive to alternative definitions of three to five years.

This test may be revisited in future empirical studies of collusion in high technology markets. In addition

to the considerations above, the test’s explanatory power increases with the pace of firm learning and the

frequency of data collection relative to the detection lag. It is also more informative if the identities of

cheating firms are known. These firms may be named directly in the litigation record, or inferred by the

researcher who matches participants’ private price or share agreements to public data.14

5 Theoretical Model and Policy Implications

5.1 Preliminaries

The preceding empirical sections suggest that owing to incentive compatibility constraints, the DRAM cartel

restricted output more significantly in the older 16Mb generation than newer generations. To expand upon

these findings, this section formalizes the conditions under which it is strictly more difficult to collude on

newer generations. It then discusses several implications for antitrust policy in high technology markets.

I present a two-period model of learning based on Siebert (2010) and Fudenberg and Tirole (1983). The

most important feature of this model is that learning occurs only once: between a product’s first and second

phase. This framework permits a simple representation of dynamic effects: several years of firm learning are

compressed into just one period within the model.

Consider a multi-period duopoly between two firms i and j. Each firm produces two products old and

new, indexed by k ∈ {o, n}. Within each period, i and j set their output simultaneously a la Cournot. In

the following period, each firm perfectly observes its rivals’ previous output decisions. The timing of the

game, which is symmetric between i and j, is depicted visually in fig. 7:

14One potential candidate for this type of study is the mid-2000s cartel in LCD screens. If cartel members cheated from
agreements, then they may be identifiable through meetings logs which contain the cartel’s target prices. These records from
the so-called “crystal meetings” are included in public expert reports.
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Figure 7: Timing of Product Life Cycles and Learning

There is only one supply side difference between the two products: firms begin producing n one period

after o. Consequently, when firms on n engage in learning, firms on o have already finished learning. Across

periods, firm learning lowers firm i or j’s marginal costs from the starting point c̄k to c̄k ·φ
(
qi/j,k,t−1

)
, where

φ (0) = 1 and φ (·) is decreasing. To maintain an infinite horizon, the model adds a third phase of repeated

static competition. Between phases two and three, any further learning effects on k diffuse to both firms.15

Next, consider the demand for each product to be given by the function Pk(Qot, Qnt), where Qkt =∑
i,j qi/j,kt. Demand is fixed across time and there is only one demand side difference between the two

products: n is higher quality than o. A fraction of consumers derive greater utility from higher quality,

whereas the rest are indifferent. This relation is mapped onto the inverse demand curves by assuming that

there is a price intercept; that n has a higher price intercept than o; and that they have identical slopes.16

Define the difference in price intercepts as µ(a) = Pn(0, 0)−Po(0, 0)︸ ︷︷ ︸
a

> 0. When µ(a) = 0, all consumers are

indifferent; as µ(a) increases, an increasing share prefer n. The overall size of the market increases with a.

Given a common discount factor δ, the supply and demand side of the game give rise to the following

profit function for firm i on product k at time t:

max
qikt

Πi =

n∑
k=o

∞∑
t=1

δt−1
[
P (Qkt;Q−kt) qikt − C (qikt, qikt−1)

]
(3)

15Appendix B.1 describes further conditions governing how cost enters the model.
16For example, a linear demand curve of this type has the form Pkt = ak − ηQkt − γQ−kt, where the intercept varies by

product but the slope parameters do not.
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Firms can play a variety of repeated game strategies, and the relevant equilibrium concept is subgame

perfection: strategies must constitute a Nash equilibrium at every period of the game. Appendix B.1 gives

the technical conditions on supply and demand sufficient for the existence of a subgame perfect equilibrium.

5.2 Collusive Equilibrium

Next, I assess the incentives of firms i and j to enforce a collusive equilibrium in the presence of learning-by-

doing and multiproduct competition. Assume that firms can agree to produce the joint profit maximizing

output, and to punish deviation from this output with a “grim trigger.” The joint profit maximizing output

is considered as a benchmark: if firms cannot reach it on a given generation, then they must resort to a

sub-optimal collusive strategy or no collusive strategy at all.17

Formally, denote the following strategy σ′ik: firms i and j maximize the discounted sum of joint profits

on k beginning from period 1, and punish deviation on product k with Cournot reversion on k forever after.

Equilibrium requires incentive compatibility:

Definition 1. Define ∗ and ∗∗ respectively as noncooperative and cooperative actions of the repeated game.

To constitute a subgame perfect equilibrium, σ′ik must satisfy:

max
qikt,qjkt

∞∑
t=1

δt−1
[
Πikt + Πjkt

]
subject to

∞∑
t=1

δt−1
[
Π∗∗ikt −Π∗ikt

]
≥ 0 (4)

Before assessing the viability of this SPE, it is useful to define the statistic µ̃t(a). This statistic marks a

convenient guide post for the extent of vertical differentiation toward n.

Definition 2. Given (ciot, cint), ∃ unique µ(a) such that Π∗int = Π∗iot. Call this µ̃t(a).

Proof. If µ(a) = 0, Π∗iot > Π∗int. As µ → ∞, Π∗int > Π∗iot → 0. By continuity of profits, there exists an

intersection point. By decreasing differences, Π∗int−Π∗iot is increasing in µ, so the intersection is unique.

17Other types of trigger and stick-and-carrot strategies share the property that the extent of punishment is based on marginal
cost. By focusing on the relationship between learning and marginal cost, the model below highlights the intuition for a variety
of collusive strategies.
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Figure 8: Minimum Discount Factor, n and o

Definition 2 shows that under competitive equilibrium, in each period there is a unique level of vertical

differentiation such that the profits on each generation are equal. This occurs because firms produce n at a

cost disadvantage relative to o in each period. Given this definition, we are ready to prove the main result:

Proposition 1. Define δ̂k as the minimum discount factor that satisfies the ICC for σ′ik.

If µ(a) ≤ µ̃1(a) , then δ̂o < δ̂n.

Proof. See Appendix B.2.

Proposition 1 formalizes the intuition that it is strictly more difficult to collude on a new generation

than an older generation if the learning rate decreases monotonically over time. The sufficient condition is

that vertical differentiation is small enough that profits on n are no greater than profits on o at the start of

collusion. This condition assumes symmetric firms and is sufficient but not necessary.18

Figure 8 depicts the result graphically with a set of parameters that satisfy the condition. As δ increases,

so does the profit on the incentive constraint, eventually making σ′ik sustainable. Because slack on o lies

strictly above n, δ̂o < δ̂n. When δ̂o < δ < δ̂n, σ′ik is sustainable for o but not n.

Proposition 1 also assumes that firms formulate strategies that treat different products independently.

Appendix A permits firms to punish deviation on n with conduct on o, and shows that joint collusion on n

and o remains strictly more difficult than collusion on o.

18At the start of the DRAM cartel in Q2-1999, the sufficient condition was partially satisfied: Π128 < Π16 < Π64.

21



5.3 Discussion

The modeling framework can be used to highlight wider issues relevant to antitrust policy. In a report to

the European Commission, Ivaldi et al. (2003) present a model of collusion in innovative markets. Their

model shows that as the exogenous probability that any firm achieves a future innovation increases, collusion

between duopolists is more difficult to sustain.

Many high technology markets are characterized by innovation through learning-by-doing as well as

overlapping product generations.19 Innovation through learning-by-doing takes place endogenously through

a firm’s output. The effect of innovation on collusion can therefore be separated from the effect of future

demand on collusion; competition agencies may find both forces important in assessing coordinated effects

in high technology mergers.

(a) Pot = a− 2Qot −Qnt ; Pnt = b− 2Qnt −Qot

a = 476 ; b ∈ [476, 521]
φ(q) = (lq)−1 + cn/c̄n; l ∈ [1, 10]

(b)

Figure 9

To illustrate, fig. 9 plots a theoretical numerical simulation (panel a) alongside empirical data from the

256Mb generation (panel b). Panel (a) plots the minimum discount factor necessary to sustain collusion on

generation o during its learning phase. By inspection, the critical value increases with the pace of learning

and the degree of vertical differentiation toward n. Moreover, the effect of increased learning on δ̂o intensifies

19Prominent examples include microprocessors, servers, LCD panels, hard drives, and numerous other computer hardware
and electronics products.
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as vertical differentiation is higher. The reason is that if n is significantly more attractive than o, a reduction

in n’s cost speeds up the the obsolescence of o.

Panel (b) plots a simplified representation of learning-by-doing against the total revenue share of the

256Mb generation, the first after the discovery of the cartel. Learning is modeled as Ckt = aX−bkt , where

Xkt =
∑
i xikt is the cumulative output accrued by the industry on generation k at time (t − 1); b = −0.2

indicates a 20% learning rate; and a = 1 is the initial cost.20 The graph shows that the revenue share of

the 256Mb generation is highest when most learning has likely been completed, and remains significant for

several more quarters. This suggests that vertical differentiation is sufficiently low that DRAM generations

are long-lived, and consequently, that collusion may pose a threat after several years of production. Agencies

can construct this type of measure using commonly available data: learning rates may appear in firms’

business documents, proprietary engineering estimates, or the academic literature. Similarly, the speed of

obsolescence can be gauged by calculating revenues or conducting customer surveys.

The effects of learning-by-doing on collusion should also be considered separately from other types of inno-

vation. It is well understood that the limits of nanoscale technology are beginning to inhibit semiconductors

from achieving the rapid cost gains of the preceding decades. On the other hand, the same phenomenon

is spurring investment in R&D geared toward new chip technologies.21 The former trend should increase

the viability of collusion whereas the latter should decrease it (as in Ivaldi et al., 2003). In evaluating co-

ordinated effects, the competition agency can investigate managers’ projections of future learning rates, the

most likely future innovators, and the stage of new product development. It is possible that this evaluation

would suggest a larger threat of coordination in the short- versus long-term, which the agency should weigh

in light of the appropriate competition law environment.

6 Conclusion

If firms in innovative industries successfully refrain from competition, the cost to society could be especially

large, because firms would also delay the rate at which they reduce long-term costs. The fundamental insight

of this paper is that the effectiveness of collusion in such markets is determined by the rate of learning. In

20As footnote 11 notes, Irwin and Klenow (1994) estimate DRAM learning to be 20% on average across generations.
21For example, “Computer Chips Evolve to Keep Up with Deep Learning,” Wall Street Journal 1/11/2017.
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particular, when firms simultaneously produce multiple products, it can be more difficult to sustain collusion

on the newer product(s). Empirical analysis of the DRAM cartel is consistent with this scenario.

More generally, this paper illustrates that learning-by-doing is one characteristic through which cartels

in a dynamic setting may face different challenges than those in static ones. This possibility depends on the

institutional elements of each market, including firm patience, the pace of learning, the number of products

each firm sells, and the extent of vertical differentiation between them. Nonetheless, several other known

collusive episodes in high-technology markets raise fruitful opportunities for further research. Careful study

of those cases may reveal more about the challenges and strategies taken by modern cartels.
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Appendices

A Collusion with Multiproduct Punishments

The discussion in the body permitted only one type of collusive strategy: σ
′

ik. Now, permit a second

collusive strategy σ
′′

i . This strategy also requires each firm to maximize the discounted sum of joint profits,

but punishes deviation on generation k with Cournot reversion on k and −k. When punishments occur

across products, firm i will consider either adhering to the collusive path on both generations or deviating

from the collusive path on both generations.22

For subgame perfection, firms must satisfy the following condition:

max
qikt,qjkt

Πi + Πj subject to

n∑
k=o

∞∑
t=1

δt−1
[
Π∗∗ikt −Π∗ikt

]
≥ 0 (5)

Equation (5) differs from the single-product case, eq. (4), in only one way: firms can pool IC constraints

between products (Bernheim and Whinston, 1990). Define the IC constraints corresponding to o and n as

go(δ) and gn(δ), respectively. The constraint in eq. (5) can be decomposed as:

go(δ) + gn(δ) ≥ 0 (6)

go(δ) ≥ −gn(δ) (7)

Equation (6) shows that σ
′′

i is sustainable only if the sum of the individual IC constraints is greater than

or equal to zero. If δ > δ̂o, then go(δ) > 0: there is “complementary slack” on o. Equation (7) shows that

this slack can be redistributed: if go(δ) is sufficiently large relative to (negative) slack −gn(δ), then collusion

can be sustained on both generations. This logic leads to the following result:

Proposition A1. Define
ˆ̂
δ as the minimum discount factor that satisfies the ICC for σ′′i .

If µ(a) ≤ µ̃1(a), then δ̂o <
ˆ̂
δ < δ̂n.

Proof. See Appendix B.3.

22Deviation on k and adherence on −k is strictly dominated by deviation on both.
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Proposition A1 imposes the same vertical differentiation condition as Proposition 1, and carries two

implications. First, collusion on both products under σ
′′

i is more difficult to sustain than collusion on

product o alone. The reason is simple: to generate any improvement relative to the single-product case, the

multiproduct case requires at least some slack profit on o, which in turn requires firms to be more patient.

Second, and for the same reason, collusion on both products is more sustainable with multiproduct than

single-product punishment.

In sum, the effect of Proposition A1 is that it “narrows the gap” between minimum discount thresholds

demonstrated in Proposition 1. However, whereas the gap is reduced, it cannot be completely eliminated.

For δ ∈ (δ̂o,
ˆ̂
δ), σ′′i and σ′in are unsustainable, but σ′io remains sustainable.
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B Proofs of Results

B.1 Technical Conditions Guaranteeing Equilibrium

On the supply side, each firm’s marginal costs evolve based on ck ∈ [ck, c̄k]. At phase one, firms have equal

marginal cost c̄k within a generation, but asymmetric costs across generations: c̄o < c̄n. Between phases one

and two, marginal cost declines from c̄k to c̄k · φ (qikt−1). There are diminishing returns to learning, such

that φ (0) = 1, ∂φ
∂q < 0, ∂2φ

∂q2 > 0. Marginal cost is bounded from below such that limq→∞ φ(q) = ck/c̄k. At

phase three, marginal cost reaches its minimum ck, co < cn.

On the demand side, define P(Qot, Qnt), P : <2
+ 7→ <2

+, where Qkt =
∑
i,j qi/j,kt. Assume that P is

invertible and twice continuously differentiable. Each element Pk ∈ [0, P̄k] with ∂Pk

∂Qk
< 0 and ∂Pk

∂Q−k
< 0

∀ Qk > 0: the two products are substitutes. Let the inverse demand slopes be symmetric across products

and fixed across time.

With constant marginal costs, restrictions on the demand curve are sufficient to guarantee equilibrium.

Assume the multiproduct version of the downward-sloping marginal revenue assumption. That is, define

MRik = Pk + ∂Pk

∂Qk
qik + ∂P−k

∂Qk
qi−k and assume:

∂MRik

∂qik
≤ 0 and

∂MRik

∂qi−k
≤ 0 (8)

Marginal revenue on k is weakly decreasing in k as well as −k. The first inequality implies that that profits

display decreasing differences on k across firms, and the second that profits display decreasing differences

across products k and −k (within or across firms). With two firms, condition 8 guarantees the existence and

uniqueness of a Cournot-Nash equilibrium at each period (Johnson and Myatt, 2006). A sufficient condition

for 8 to hold is log-concave inverse demand, e.g. with the exponential form.
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B.2 Proof of Proposition 1

Separate the ICC for collusion on generations k ∈ {o, n} into two parts, as follows:

∞∑
t=2

δt−1 (Π∗∗ikt −Π∗ikt) ≥ Π∗ik1 −Π∗∗ik1

By construction, the left hand side is increasing in δ, and it follows that there is a critical discount factor

δ̂k such that σ′ik is sustainable for δ ≥ δ̂k and unsustainable for δ < δ̂k.

The sufficient condition is that µ(a) ≤ µ̃1(a). Assume first that this constraint is binding. Further,

assume the absence of any learning effects on n. Both of these assumptions will be relaxed in turn.

In assessing the incentive to deviate, we must consider two different scenarios: deviation on n, and

deviation on o. Through symmetry of demand, the respective on- and off-equilibrium path profits under σ′ik

are equal in both scenarios, which implies equality of deviation profits:

Π∗∗iot = Π∗∗int

Π∗iot = Π∗int

(9)

∞∑
t=2

δt−1 [Π∗∗int −Π∗int] =

∞∑
t=2

δt−1 [Π∗∗iot −Π∗iot] (10)

Next, consider any period t in which the sufficient condition strictly holds: µ(a) < µ̃t(a). By definition,

Π∗iot > Π∗int. Then the marginal profitability of reducing output is greater on o than n:

∂πiot
∂qiot

>
∂πint
∂qint

(11)
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It follows that total profitability in reducing output from the Cournot-Nash equilibrium to the collusive

equilibrium is greater on o than n:

∫ q∗iot

q∗∗iot

∂πiot
∂qiot

dq >

∫ q∗int

q∗∗int

∂πint
∂qint

dq (12)

Π∗∗iot −Π∗iot > Π∗∗int −Π∗int (13)

Finally, reintroduce the learning effect for product n. Consider period 2 and assume for the sake of

contradiction that:

(Π∗∗io2 −Π∗io2) ≤ (Π∗∗in2 −Π∗in2) (14)

Inequality 14 implies:

(P ∗∗o2 (·)− co) · q∗∗io2 − (P ∗o2(·)− co) · q∗io2 ≤

(P ∗∗n2(·)− cin2 (q∗∗in1)) · q∗∗in2 − (P ∗n2(·)− cin2 (q∗in1)) · q∗in2

(15)

Inequality 15 implies that cin2 (q∗∗in1) ≤ cin2 (q∗in1). However, q∗∗in1 < q∗in1 implies:

c1 · φ (q∗∗in1) > c1 · φ (q∗in1)

cin2 (q∗∗in1) > cin2 (q∗in1)

(16)

It follows that slack at period 2 is greater on o than n:

Π∗∗io2 −Π∗io2 > Π∗∗in2 −Π∗in2 (17)

Combining 10, 13, and 17, it follows that the minimum discount factor necessary to sustain σ′io is less

than that to sustain σ′in :

δ̂o < δ̂n � (18)
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B.3 Proof of Proposition A.1

Appendix B.2 proves that δ̂n > δ̂o. Also recall from Appendix A that the pooled ICC corresponding to σ
′′

i

is:

go(δ) ≥ −gn(δ) (19)

The proof is divided into two parts to correspond to two distinct cases. First, I show that
ˆ̂
δ is strictly greater

than δ̂o. Consider increasing δ from the left. As δ → δ̂o from the left, go(δ) → 0 from the left and 19 is

unsatisfied:

lim
δ→δ̂o

go(δ) = 0 (20)

lim
δ→δ̂o

go(δ) + gn(δ) < 0 (21)

lim
δ→δ̂o

go(δ) < −gn(δ) (22)

And it follows that
ˆ̂
δ > δ̂o.

Second, I show that
ˆ̂
δ is strictly less than δ̂n. Define go(δ̂n) − go(δ̂o) = γ > 0. Consider the range

δ̂o < δ < δ̂n. As δ → δ̂n from the left, gn(δ)→ 0 from the left and 19 is satisfied:

lim
δ→δ̂n

gn(δ) = 0 (23)

lim
δ→δ̂n

go(δ)+gn(δ) = γ + 0 (24)

lim
δ→δ̂n

go(δ)− γ = −gn(δ) (25)
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Define ε > 0 as an arbitrarily small constant. By the continuity of go (δ), there exists an ε such that:

go(δ̂n)− go(δ̂n − ε) ≤ γ (26)

go(δ̂n − ε) ≥ go(δ̂n)− γ = −gn(δ̂n)︸ ︷︷ ︸
=0

> −gn(δ̂n − ε) (27)

go(δ̂n − ε) > −gn(δ̂n − ε) (28)

And it follows that
ˆ̂
δ < δ̂n. �
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C Additional Figures and Tables

(a) (b)

(c)

Figure C1: Market Share by Generation, Largest Firms
Firm names are masked to avoid conveying the impression of private information about cartel participants.

Figure C2: Industry DRAM Output against PC Shipment Change
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Table C1: First Stage Estimate of Log Outputk+1 on Exogenous Variables

OLS

Constant 17.349 (5.793)

Firm Agek+1
‡ 0.194 (0.016)

Log Cum Output† 0.510 (0.075)

Log PC Ship -1.207 (0.329)

Log PC Ship × Gen Rank2 0.069 (0.020)

Log PC Ship × Gen Rank3 0.190 (0.029)

Log PC Ship × Gen Rank4 0.213 (0.031)

Log PC Ship × Gen Rank5 0.121 (0.031)

I(1997)16 0.041 (0.692)

I(1997)16 × I(Memb)16 0.417 (0.903)

I(1998)16 0.867 (1.064)

I(1998)16 × I(Memb)16 0.270 1.265

I(1997)64 0.553 (0.571)

I(1997)64 × I(Memb)64 -1.621 (0.611)

I(1998)64 -0.654 (0.573)

I(1998)64 × I(Memb)64 -1.429 (0.785)

Firm FE × Log Cum Output Y
Quarter FE Y

R-squared 0.754
N 2,387
Clusters 136

Coefficients and standard errors displayed. Standard errors clustered at firm-
generation level.
‡ Instrumental variable equals elapsed quarters of firm i producing k + 1
† Effect of log cumulative output is given for average firm.
The dependent variable is logged firm-level output of units on generation
k + 1. Sample for each regression is restricted to firm shipments within first
12 years of generation activity and at least 1000 units of quarterly shipments.
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Table C2: Firm Log Cumulative Output on Log Current Output:
Subsample Test - 2SLS Model, 1997-2011

Firm × Log Cum Output† × Log Cum Output × I(Post)‡

2 -0.028 (0.033) 0.021 (0.033)

3 0.044 (0.035) -0.029 (0.013)

4 0.038 (0.031) 0.012 (0.014)

5 -0.026 (0.032) 0.035 (0.031)

6 0.032 (0.031) -0.021 (0.015)

7 -0.067 (0.031) -0.041 (0.021)

8 -0.010 (0.031) 0.008 (0.018)

9 -0.084 (0.034) 0.012 (0.022)

10 -0.040 (0.030) 0.034 (0.020)

11 -0.017 (0.035) 0.026 (0.025)

12 -0.002 (0.032) 0.043 (0.018)

13 -0.070 (0.033) -0.013 (0.023)

14 -0.002 (0.033) -0.248 (0.035)

15 -0.016 (0.033) -0.024 (0.019)

Log Cum Output 0.454 (0.059)
Log PC Ship Y
Log PC Ship × Gen Rankk Y
Log Outputk+1 Y
Quarter FE Y

R-squared 0.644
N 2,376
Clusters 131

Coefficients and standard errors (clustered at firm-generation level) displayed.
† estimates firm i learning effect for 1Mb - 128Mb
‡ estimates incremental firm i learning learning effect for 256Mb - 2Gb
The dependent variable is logged firm-level output of DRAM units. Regression estimated
via 2SLS by instrumenting Log Outputk+1 by Firm Agek+1. Excludes firm-generation
pairs with less than or equal to 4 quarters of data. Firm names are masked to avoid
conveying the impression of private information about cartel participants.
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D Trial Transcripts

Figure D1: Excerpt from Transcript of Proceedings as to Criminal Trial of Gary Swanson, Case No. 06-0692,
U.S. District Court N.D. Cal., 12/17/2007, pg. 97.
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