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Abstract 

We develop a model of vertical mergers with open auctions upstream. 
This setting may be appropriate for industries where inputs are 
procured via auction-like “requests for proposal.” For example, 
Drennan et al (2020) reports that a model of this type was used during 
the CVS-Aetna merger investigation. Our approach contrasts with a 
growing body of work on vertical mergers where input prices are 
determined through Nash bargaining. We discuss how the vertical 
merger effects of raising rivals’ costs and eliminating double markup 
might be quantified in our particular model. 
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1 Introduction 

Recent years have seen a growing need for vertical merger analyses. With the DOJ 

challenging AT&T’s merger with Time Warner (2017) and the FTC challenging Illumina’s 

merger with GRAIL (2021),1 it appears the U.S. antitrust agencies have collectively sought 

to block more vertical mergers in the past four years than they had in the prior four 

decades.2 Vigorous enforcement of vertical mergers seems likely to continue based on the 

recent “Executive Order on Promoting Competition in the American Economy,” which 

encourages the DOJ and FTC to reconsider how they assess vertical as well as horizontal 

mergers.3 The literature, however, offers few models that the agencies can rely on to 

quantify the competitive effects of vertical mergers. This research seeks to bridge that 

gap.   

We analyze input foreclosure, specifically “raising rivals’ costs” (RRC), 4 where linear 

input prices are determined via procurement auction. Procurement often involves 

solicitation of “requests for proposal” (RFPs), a process with auction-like properties that 

can have multiple rounds. For example, health insurance companies procure pharmacy 

benefits management (PBM) services through auction-like RFP processes. The resulting 

PBM service prices become part of insurers’ marginal cost when competing for insurance 

(or administrative) business downstream. 

As discussed in Drennan et al (2020), the 2017 merger agreement between CVS Health 

Corporation and Aetna Inc. had a vertical aspect in addition to a horizontal one. At the 

time of the merger, CVS (but not insurer Aetna) owned a major PBM. This raised the 

possibility that, post-merger, CVS might significantly alter its bidding behavior in 

                                                             
1 See the DOJ’s complaint in U.S. v. AT&T (https://www.justice.gov/atr/case-
document/file/1012916/download) and FTC’s administrative complaint In the Matter of Illumina, Inc. 
and GRAIL, Inc.  
(https://www.ftc.gov/system/files/documents/cases/redacted_administrative_part_3_complaint_reda
cted.pdf) for the vertical concerns at issue in these merger challenges.  
2 In 1979, the FTC unsuccessfully challenged Freuhauf’s acquisition of Kelsey-Hayes Company. By many 
accounts, this was the last vertical merger challenge prior to 2017 that was not resolved via settlement. 
See for example, Salop (2018) and Yde (2007).    
3 See White House, “Executive Order on Promoting Competition in the American Economy,” July 9, 2021 
(https://www.whitehouse.gov/briefing-room/presidential-actions/2021/07/09/executive-order-on-
promoting-competition-in-the-american-economy/) 
4 The concept of “raising rivals’ costs” was first introduced by Salop and Scheffman (1983). 

https://www.justice.gov/atr/case-document/file/1012916/download
https://www.justice.gov/atr/case-document/file/1012916/download
https://www.ftc.gov/system/files/documents/cases/redacted_administrative_part_3_complaint_redacted.pdf
https://www.ftc.gov/system/files/documents/cases/redacted_administrative_part_3_complaint_redacted.pdf
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auctions to supply PBM services to Aetna’s insurance rivals to raise their PBM costs and 

thereby expand Aetna’s book of business downstream.5 

We describe a vertical merger simulation model of the type reportedly used by DOJ 

to analyze these RRC concerns).  Such an analysis was reported to have contributed to 

DOJ’s conclusion that the CVS-Aetna merger was unlikely to cause vertical harm.6 

In our second-price open auction setting, the input supplier that submits the lowest 

bid wins an auction, but receives the next-higher bid as compensation in that auction. 

Unintegrated suppliers bid their realized costs, as doing so is a weakly dominant strategy. 

Integrated suppliers, on the other hand, tend to bid above realized cost in auctions to 

supply downstream rivals. The reason is that in case the integrated supplier’s bid is the 

second lowest, the elevated bid raises the downstream rival’s input price. This occurs 

when the integrated supplier loses the procurement auction but comes close enough to 

determine the input price.  

Although bidding above cost depresses the integrated firm’s expected upstream 

profit, it tends to increase its expected downstream profit by diverting some unit sales 

from the downstream rival to its own downstream division. The vertically integrated firm 

bids above realized cost at the point where the countervailing effects on upstream and 

downstream expected profits just cancel at the margin. 

A vertically integrated firm in our particular open auction model also tends to gain 

from the elimination of double markup (EDM). The downstream division of the 

integrated firm runs a procurement auction just like every other participant in the 

downstream market. The upstream division bids its realized cost in this auction. In case 

the upstream division’s bid is the lowest, the downstream division sources input 

                                                             
5 Drennan et al (2020) also discuss another vertical aspect of CVS-Aetna that DOJ investigated: CVS’s 
ownership of a major retail pharmacy chain. 
6 “Applying a Podwol-Raskovich type of model to the relevant markets identified various factors that 
contributed to our conclusion that the merger was unlikely to lead to vertical harm.” (Drennan et al, 2020, 
Section 3.2.1). In “United States v. CVS and Aetna Questions and Answers for the General Public” 
(https://www.justice.gov/opa/press-release/file/1099806/download), the DOJ explained that CVS was 
unlikely to profitably raise the PBM costs of Aetna’s insurance rivals because any resulting gain to the 
merged firm in its health insurance business would not offset the loss of profit in the merged firm’s PBM 
business. Horizontal concerns with the CVS-Aetna merger were resolved by consent decree requiring 
divestiture. 

https://www.justice.gov/opa/press-release/file/1099806/download
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internally at the upstream division’s marginal cost, rather than the next-higher bid. This 

is the EDM effect of vertical merger in our setting. 

The RRC and EDM effects of vertical merger tend to have countervailing effects on 

downstream prices. To the extent that input cost changes are passed through to output 

prices, RRC tends to raise rivals’ (and own) downstream prices, whereas EDM tends to 

lower own (and rivals’) downstream prices. A goal of our vertical merger simulation 

model is to assess the net impact of these countervailing effects.7 

Although our auction model of procurement upstream could be paired with a variety 

of competition models downstream, for concreteness we treat the case of downstream 

competitive interactions being Nash-Bertrand price setting with discrete-choice logit 

demand. We derive the relationship between the input price that downstream producer 

𝑗𝑗 realizes through its procurement auction and the downstream profits of integrated firm 

𝑖𝑖. 

There is an existing literature analyzing RRC where linear input prices are determined 

by Nash bargaining upstream. In this setting, a vertical merger tends to improve the 

merged firm’s bargaining position in negotiations over input prices with a downstream 

rival, thereby raising the input price in the post-merger bargaining outcome. Recent 

analyses include Crawford et al (2018), Rogerson (2014) and Sheu and Taragin (2021). 

These studies are well suited to industries such as video programming and distribution, 

where distributors (the downstream firms) routinely contract with multiple 

programmers (the input suppliers) for the sake of bundling several inputs into an 

attractive final product. The RRC effect depends on the integrated programmer-

distributor reaching a supply agreement both pre- and post-merger. This is in contrast to 

the current setting where downstream firms contract with a single input supplier. In our 

setting RRC arises when an integrated supplier increases its bid above cost and in so 

doing, raises the lowest losing bid.    

                                                             
7 We distinguish the endogenous EDM effect from merger-specific marginal cost efficiencies exogenous to 
the model, such as a leftward shift in the upstream merging party’s cost distribution when dealing with its 
downstream affiliate. 
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The remainder of the paper proceeds as follow. In Section 2 we describe the economic 

setting. We derive subgame-perfect equilibrium in Section 3. In Section 4 we sketch how 

the vertical merger simulation might be calibrated and run and Section 5 concludes. 

2   Economic Setting8 

Let ℳ be the set of independent upstream firms and upstream divisions of forward-

integrated firms, indexed 𝑖𝑖 = 1, 2, … ,𝑚𝑚 , where 𝑚𝑚 = |ℳ |. Let 𝒩𝒩 be the set of independent 

downstream firms and downstream divisions of backward-integrated firms, indexed 𝑗𝑗 =

1, 2, … ,𝑛𝑛, where 𝑛𝑛 = |𝒩𝒩| . To focus on the price effects of vertical integration, we abstract 

from horizontal merger effects by assuming that every integrated firm is composed of a 

single upstream division and a single downstream division (which bear the same label). 

Let ℛ be the set of integrated firms, with 𝑟𝑟 = |ℛ| ≤ min{𝑚𝑚, 𝑛𝑛}. For notational convenience 

and without loss of generality, we take the first 𝑟𝑟 ordered elements of both ℳ and 𝒩𝒩 to 

be the integrated firms. 

The game is played in two stages. In stage one, each producer secures a per-unit price 

for an essential input via a procurement auction held among all input suppliers. The 

auctions take place simultaneously and the per-unit price in each auction is revealed only 

at the conclusion of stage one. In stage two, producers compete for the sale of final goods 

to end consumers, taking as given the producer’s own per-unit input price as well as the 

per-unit input prices of rival producers.  

In what follows, we describe the features of the upstream auction market assuming a 

generic downstream market. For the downstream market, we require only that within an 

equilibrium of the stage-two subgame, an increase in a producer’s per-unit input price 

leads to a reduction in quantity demanded of the producer in question’s final product 

and an increase in quantity demanded of rival producers’ products, all else equal. In the 

next section, we model the downstream market as price competition with multinomial 

logit demand as this model has gained purchase in antitrust applications.    

                                                             
8 Unless otherwise indicated, derivations of all equations in this section are in the Appendix. 
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 Auctions in stage one are second-price: the input supplier with the lowest bid wins 

the auction, receiving the next-higher bid as payment per unit supplied.9 This can be 

interpreted as applying to homogeneous inputs that differ only in their cost. But the 

model can be interpreted equally well as applying to vertically differentiated inputs, so 

long as the “quality-adjusted” costs are distributed in the way described below.10 As the 

results are qualitatively the same under either interpretation, we keep to the simpler 

notation of second-price auctions involving homogeneous inputs. 

For stage one, we adopt a modified version of the stochastic approach of Waehrer and 

Perry (2003) (WP),11 which models a firm’s cost as distributed according to the power 

function 

𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) = 1− [1− 𝐹𝐹(𝑐𝑐)]𝑘𝑘𝑖𝑖,        𝑖𝑖 ∈ ℳ,             (1) 

where the firm-specific parameter 𝑘𝑘𝑖𝑖 > 0 (in our notation) can be interpreted as the 

number of times input supplier 𝑖𝑖 takes independent draws from the common underlying 

cdf 𝐹𝐹(∙).12 The minimum of the 𝑘𝑘𝑖𝑖 draws taken from 𝐹𝐹(∙) in a given procurement auction 

𝑗𝑗 is then 𝑖𝑖’s realized cost of supplying input to downstream producer 𝑗𝑗. 

WP describe how 𝑘𝑘𝑖𝑖 can also be interpreted as 𝑖𝑖’s “capacity” to supply input. In 

support of this interpretation, WP note that 𝑘𝑘𝑖𝑖 can be thought of as the number of plants 

                                                             
9 We assume procurers do not run “optimal” auctions for the essential input, where reserve prices are set 
such that with positive probability none of the essential input is procured. We appeal to the idea that, in a 
dynamic setting (outside our model), non-participation in the downstream market for even one period 
would entail an unacceptably high reputational loss for the producer as a credible market participant. In 
principle, a reserve price targeted to an unaffiliated integrated supplier could improve the procurer’s 
expected auction outcome without risking non-supply by every supplier, but we do not incorporate this 
complication into the model. Our model is thus “conservative” in that it tends to over-predict harm, so that 
a finding of no significant anticompetitive effect is likely robust to the inclusion of targeted reserve pricing. 
10 Miller (2014) also analyzes procurement auctions in a merger context. Our analysis differs from his in 
two respects. First, Miller’s (2014) focus is on horizontal mergers, whereas ours is on vertical mergers. 
Second, Miller’s (2014) post-merger price effect flows from the merged firm withdrawing the less preferred 
of the two merging products from the auction. No options are withdrawn outright in our setting, however 
the merged firm tends to bid as if it is withdrawing some “effective capacity,” as we discuss below. 
11 See also Froeb, Tschantz and Crooke (2001) for a broader discussion of power-related distributions in 
second-price auctions in horizontal merger analysis.  
12 Parameter 𝑘𝑘𝑖𝑖 is a real number, not necessarily an integer. The number-of-plants metaphor thus is not 
exact. 
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from which 𝑖𝑖 could produce input, each plant obtaining an iid cost draw from 𝐹𝐹(∙) with 

respect to supplying a given output producer 𝑗𝑗.13 

WP show that firm 𝑖𝑖’s probability of winning a given procurement auction (also its 

expected share of wins across all auctions) is its capacity share,14 

𝑠𝑠𝑖𝑖𝑢𝑢 = 𝑘𝑘𝑖𝑖 𝐾𝐾⁄ ,                 (2) 

where 𝐾𝐾 ≡ ∑ 𝑘𝑘ℎℎ∈ℳ  is upstream industry capacity (superscript 𝑢𝑢 indicating upstream 

variables). In our vertical setting, however, equation (2) only holds in the absence of any 

RRC, as we explain presently. 

We extend WP’s capacity idea to a vertical setting, modeling RRC as a bidding rule 

akin to a capacity restriction chosen by integrated supplier 𝑖𝑖 in the auction to supply a 

downstream rival 𝑗𝑗. 

Our modeling approach to RRC involves two steps. First, we focus on the special case 

of 𝐹𝐹(𝑐𝑐) = 𝑐𝑐, 𝑐𝑐 ∈ [0, 1].15 Absent evidence to the contrary, we consider uniformity in the 

underlying cdf 𝐹𝐹(∙) to be a reasonable prior, keeping in mind that the supplier-specific 

capacity parameters 𝑘𝑘𝑖𝑖  in the overarching cost distributions 𝐺𝐺(∙) offer flexibility to 

capture observed asymmetries across input suppliers. 

Second, we characterize integrated input suppliers’ bid functions as 

𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖 ; 𝜃𝜃𝑖𝑖𝑖𝑖� = 1− �1 − 𝑐𝑐𝑖𝑖𝑖𝑖�
𝜃𝜃𝑖𝑖𝑖𝑖 ,        𝑖𝑖 ∈ ℳ, 𝑗𝑗 ∈ 𝒩𝒩,           (3) 

where 𝑐𝑐𝑖𝑖𝑖𝑖 is supplier 𝑖𝑖’s cost draw in auction 𝑗𝑗 and 𝜃𝜃𝑖𝑖𝑖𝑖 ≥ 1 is a choice variable. Now define 

𝑘𝑘�𝑖𝑖𝑖𝑖 ≡ 𝑘𝑘𝑖𝑖 𝜃𝜃𝑖𝑖𝑖𝑖⁄ .                 (4) 

In the Appendix, we show that 

𝐺𝐺�𝑏𝑏�𝑐𝑐 ; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝑘𝑘𝑖𝑖� = 𝐺𝐺�𝑐𝑐�𝑘𝑘�𝑖𝑖𝑖𝑖� = 1 − (1− 𝑐𝑐)𝑘𝑘� 𝑖𝑖𝑖𝑖 .            (5) 

                                                             
13 We note that this interpretation is only approximate as each supplier has limitless capacity to produce 
the input at its cost draw.  
14 Waehrer and Perry (2003, 291), Lemma 1(i). 
15 Support on [0,1] is a convenient normalization for now. In simulation, we linearly transform 𝑐𝑐 to a 
marginal cost that is uniformly distributed on �𝑐𝑐,𝑐𝑐�, for appropriately chosen endpoints to this interval. 
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Thus comparing the variant of equation (1), 𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) = 1 − (1− 𝑐𝑐)𝑘𝑘𝑖𝑖, to equation (5), a 

supplier 𝑖𝑖 with capacity 𝑘𝑘𝑖𝑖 that adheres to the bid function in equation (3) and chooses 

𝜃𝜃𝑖𝑖𝑖𝑖 > 1 generates a distribution of bids in auction 𝑗𝑗 identical to what 𝑖𝑖’s distribution of 

costs would be if its capacity were 𝑘𝑘�𝑖𝑖𝑖𝑖 < 𝑘𝑘𝑖𝑖. 

We refer to 𝑘𝑘� 𝑖𝑖𝑖𝑖 as the effective capacity that supplier 𝑖𝑖 provides in auction 𝑗𝑗. If 𝑖𝑖 chooses 

𝜃𝜃𝑖𝑖𝑖𝑖 > 1 , 𝑖𝑖 bids as if it were unintegrated (bidding realized cost) but with smaller capacity 

𝑘𝑘�𝑖𝑖𝑖𝑖. In the number-of-times-drawn interpretation, the integrated firm obtains its lowest 

cost realization by taking 𝑘𝑘𝑖𝑖 draws from the underlying cost distribution (not 𝑘𝑘�𝑖𝑖𝑖𝑖 draws) 

but bids above the realized cost as if it had taken only 𝑘𝑘�𝑖𝑖𝑖𝑖 draws and bid the corresponding 

realized cost, which is higher in expectation. 

Choosing 𝜃𝜃𝑖𝑖𝑖𝑖 > 1  induces a distribution of bids for downstream rival 𝑗𝑗 which first-

order stochastically dominates the distribution of bids for 𝜃𝜃𝑖𝑖𝑖𝑖 = 1, thereby raising 𝑗𝑗’s 

expected input price relative to the 𝜃𝜃𝑖𝑖𝑖𝑖 = 1 baseline. Doing so also reduces 𝑖𝑖’s expected 

profit in the auction. For this reason, unintegrated suppliers choose  𝜃𝜃𝑖𝑖𝑖𝑖 = 1. Integrated 

suppliers, on the other hand, choose 𝜃𝜃𝑖𝑖𝑖𝑖 > 1. We sometimes refer to the magnitude of 𝜃𝜃𝑖𝑖𝑖𝑖  

(relative to one) as the stringency of integrated supplier 𝑖𝑖’s RRC in auction 𝑗𝑗, or 

synonymously as the stringency of 𝑖𝑖’s “capacity restriction” to 𝑗𝑗. Although restricting 

capacity to a downstream rival 𝑗𝑗 reduces the integrated firm’s expected profit in auction 

𝑗𝑗 upstream, it increases expected profit downstream.  

The bid function in equation (3) can be interpreted as integrated supplier 𝑖𝑖 applying 

𝜃𝜃𝑖𝑖𝑖𝑖  in auction 𝑗𝑗 ex ante of observing its cost realization in that auction. This would not be 

optimal if it were feasible for 𝑖𝑖 to submit its bid ex post of observing its cost realization. In 

the spirit of Choi (2001), however, we treat integrated firms as consisting of upstream and 

downstream profit centers whose actions are coordinated by simple heuristic rules set by 

“headquarters,” which is less well informed than its divisions about reigning market 

conditions.16 At the time any auction is run, headquarters knows only its own and rival 

bidders’ cost distributions and bidding strategies, whereas the upstream division, which 

submits the bid, also observes its own cost realization. In this setting, we posit that 

                                                             
16 This assumption greatly simplifies the analysis as it yields an analytical distribution of each suppliers’ bids as per 
expression (5).   
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headquarters directs the upstream subsidiary to bid according to equation (3),17 where 

headquarters chooses 𝜃𝜃𝑖𝑖𝑖𝑖  to maximize integrated profits.  

Given that our model of the upstream stage is a special case of WP’s single-stage 

model, ours inherits several of the equilibrium results in WP. In particular, an analog to 

equation (2) holds: the probability that supplier 𝑖𝑖 wins auction 𝑗𝑗 is  

𝑠𝑠𝑖𝑖𝑖𝑖𝑢𝑢 = 𝑘𝑘�𝑖𝑖𝑖𝑖 𝐾𝐾�𝑖𝑖� ,        𝑖𝑖 ∈ ℳ, 𝑗𝑗 ∈ 𝒩𝒩,              (6) 

where 

𝐾𝐾�𝑖𝑖 ≡ ∑ 𝑘𝑘�ℎ𝑖𝑖ℎ∈ℳ                 (7) 

is the total effective capacity provided in auction 𝑗𝑗. Note from equations (4), (6) and (7) 

that, holding fixed 𝜃𝜃ℎ𝑖𝑖 for input suppliers ℎ ≠ 𝑖𝑖, an increase in 𝜃𝜃𝑖𝑖𝑖𝑖  reduces the likelihood 

that 𝑖𝑖 wins the auction to supply 𝑗𝑗. Conversely, holding fixed 𝜃𝜃𝑖𝑖𝑖𝑖 , an increase in 𝜃𝜃ℎ𝑖𝑖, which 

tends to lower 𝐾𝐾�𝑖𝑖, increases the likelihood that 𝑖𝑖 wins auction 𝑗𝑗. 

The outcome of auction 𝑗𝑗 is an input price 𝑤𝑤𝑖𝑖 for downstream producer 𝑗𝑗, equal to the 

second-lowest bid submitted in the auction. E�𝑤𝑤𝑖𝑖�, the expected per-unit input price, is 

given by 

E�𝑤𝑤𝑖𝑖� = 1

𝐾𝐾�𝑖𝑖+1
+ ∑ E�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 �𝑚𝑚

𝑖𝑖=1  ,        𝑖𝑖 ∈ ℳ , 𝑗𝑗 ∈ 𝒩𝒩 .           (8) 

As we show in the Appendix, the first term on the right-hand side of equation (8), 

1 �𝐾𝐾�𝑗𝑗 + 1�⁄ , is the expected value of the lowest bid submitted in auction 𝑗𝑗. The second set 

of terms is the sum of input suppliers’ expected (per-unit) net margins. The expected net 

margin of supplier 𝑖𝑖 in auction j, E�𝜇𝜇� 𝑖𝑖𝑖𝑖𝑢𝑢 �, is the expected difference between the second-

lowest bid and 𝑖𝑖’s bid, conditional on 𝑖𝑖 having the lowest bid and hence winning auction 

                                                             
17 We further posit that, in the fullness of time, headquarters has the ability to audit/observe the upstream 
division’s past cost realizations to verify whether the upstream manager has followed the bidding rule, 
punishing the manager for deviations from the rule. 
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𝑗𝑗.18 The sum of expected net margins across all bidders in auction 𝑗𝑗 is the expected value 

of the difference between the second-lowest and lowest bids among all bidders.19 

The expected net margin of supplier 𝑖𝑖 in auction 𝑗𝑗 is given by 

E�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 � =  𝑘𝑘� 𝑖𝑖𝑖𝑖
�𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

 ,       𝑖𝑖 ∈ ℳ, 𝑗𝑗 ∈ 𝒩𝒩,                 (9) 

where  

𝐾𝐾�−𝑖𝑖 ,𝑖𝑖 ≡ ∑ 𝑘𝑘�ℎ𝑖𝑖ℎ∈ℳ\𝑖𝑖 ,      𝑖𝑖 ∈ ℳ , 𝑗𝑗 ∈ 𝒩𝒩 ,           (10) 

is the sum of input suppliers’ effective capacities for all ℎ ≠ 𝑖𝑖. Thus E�𝑤𝑤𝑖𝑖� can be calculated 

from equations (8)-(10) given information on effective capacities in auction 𝑗𝑗. 

We show in the Appendix that  

𝜕𝜕E�𝑤𝑤𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝑘𝑘� 𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�𝑖𝑖+1�
2  ∑ 𝑘𝑘�ℎ𝑖𝑖�𝐾𝐾�𝑖𝑖+𝐾𝐾�−ℎ ,𝑖𝑖+2�

�𝐾𝐾�−ℎ,𝑖𝑖+1�
2ℎ∈ℳ\𝑖𝑖 > 0,      𝑖𝑖 ∈ ℳ , 𝑗𝑗 ∈ 𝒩𝒩.      (11) 

Restricting effective capacity thus raises a downstream rival’s expected input price, and 

the greater the reduction in effective capacity (higher 𝜃𝜃𝑖𝑖𝑖𝑖 ), the higher the downstream 

rival’s expected input cost, all else equal. 

In evaluating the profit impact of an RRC tactic, an integrated input supplier looks to 

its gross upstream margins per-unit sale of input into product 𝑗𝑗 (assumed to be in fixed 

proportion) which are then weighted by the sales of product 𝑗𝑗. The gross margin of 

supplier 𝑖𝑖 in auction 𝑗𝑗 is 

E�𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 � ≡ E�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 �+ 𝜉𝜉𝑖𝑖𝑖𝑖,      𝑖𝑖 ∈ ℳ , 𝑗𝑗 ∈ 𝒩𝒩 , 

where 𝜉𝜉𝑖𝑖𝑖𝑖 is the expected bid-cost spread, the expected difference between 𝑖𝑖’s bid in 

auction 𝑗𝑗 and 𝑖𝑖’s realized cost in that auction, conditional on winning the auction. This 

                                                             
18 Put differently, E�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢� is what 𝑖𝑖’s expected profit margin would be in auction 𝑗𝑗 if 𝑖𝑖’s effective capacity 𝑘𝑘�𝑖𝑖𝑖𝑖 
were to equal its actual capacity 𝑘𝑘𝑖𝑖 (i.e., as if 𝑖𝑖’s bid equaled its realized cost). 
19 Equation (8) derives from WP’s Lemma 1(ii) (Waehrer and Perry (2003, at 291)), applied to our particular 
cost distribution, replacing actual capacities 𝑘𝑘𝑖𝑖 with effective capacities 𝑘𝑘�𝑖𝑖𝑖𝑖 and replacing expected gross 
margins (discussed below) with expected net marginsE�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 �. In WP’s setting, auction outcomes are 
allocatively efficient, because suppliers bid their costs, so the winning bidder necessarily has the lowest 
cost. This is no longer true in our vertical setting, where integrated firms tend to bid above cost. An 
integrated firm may lose an auction despite having the lowest cost. Equation (8) nonetheless holds. 
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expected spread is 𝜉𝜉𝑖𝑖𝑖𝑖 ≡ E�𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖|𝑖𝑖 wins 𝑗𝑗� × Pr{𝑖𝑖 wins 𝑗𝑗}. We derive 𝜉𝜉𝑖𝑖𝑖𝑖 in the Appendix 

in terms of effective capacities, as 

𝜉𝜉𝑖𝑖𝑖𝑖 =  𝑘𝑘𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖
�𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

,      𝑖𝑖 ∈ ℳ , 𝑗𝑗 ∈ 𝒩𝒩.                                                       (12) 

Note that 𝜉𝜉𝑖𝑖𝑖𝑖 = 0 for 𝜃𝜃𝑖𝑖𝑖𝑖 = 1 and 𝜉𝜉𝑖𝑖𝑖𝑖 tends to increase with 𝜃𝜃𝑖𝑖𝑖𝑖 .20  

Despite RRC, a vertical merger’s net effect on downstream prices may be nonpositive 

given the merger’s EDM effect, to which we now turn. If procurer 𝑗𝑗 is backward 

integrated, it does not pay a markup over cost when purchasing from its integrated 

supplier, so the upstream division’s gross margin from internal supply is 𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 = 0.21 

Moreover, if 𝑖𝑖 and 𝑗𝑗 merge, the merger’s first-order effect22 on 𝑗𝑗’s expected input price is 

 EDM = −E�𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 �,              (13) 

where E�𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 � refers to the pre-merger value. For a previously unintegrated input supplier, 

equation (13) follows from the fact that the term E�𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 � on the right-hand side of equation 

(8) falls to zero post-merger, and 𝜉𝜉𝑖𝑖𝑖𝑖 = 0 in this case.23 

To sum up, restricting effective capacity depresses input supplier 𝑖𝑖’s expected profit 

upstream from supplying a downstream rival 𝑗𝑗, but tends to raise 𝑗𝑗’s expected input cost, 

thereby tending to divert unit sales to 𝑖𝑖’s downstream division and so increasing 𝑖𝑖’s 

downstream profit. This highlights the tradeoff faced by an integrated firm 

contemplating RRC: in attempting to raise a rival’s cost to gain sales in the downstream 

                                                             
20 For unintegrated input suppliers, 𝜉𝜉𝑖𝑖𝑖𝑖 = 0 and so expected gross and net profits are equal. A divergence 
between expected gross and net profits arises from RRC by an integrated supplier. Note that 𝜉𝜉𝑖𝑖𝑖𝑖 is a pure 
transfer to (winning) supplier 𝑖𝑖 that has no direct effect on 𝑗𝑗’s input price, hence the absence of 𝜉𝜉𝑖𝑖𝑖𝑖 from the 
right-hand side of equation (8). 
21 In our conceptual framing, headquarters instructs the upstream division to rebate to the downstream 
division not only the difference between the upstream division’s bid and the next-higher bid, so that 𝜇𝜇�𝑖𝑖𝑖𝑖𝑢𝑢 =
0, but also to bid its realized cost, so that 𝜉𝜉𝑖𝑖𝑖𝑖 = 0 as well. 
22 By “first-order effect” we mean holding fixed 𝜃𝜃ℎ𝑙𝑙, ℎ ∈ℳ\𝑖𝑖, 𝑙𝑙 ∈ 𝒩𝒩. 
23 If 𝑖𝑖 is already forward-integrated prior to its vertical merger with 𝑗𝑗, the first-order EDM effect will also 
include eliminating the expected pre-merger markup 𝜉𝜉𝑖𝑖𝑖𝑖 >0. Thus, all else equal, a vertical merger by an 
already integrated input supplier will tend to have a larger EDM effect than one by a previously 
unintegrated supplier. A vertical merger by an already integrated input supplier will, however, also have 
a horizontal aspect to be accounted for when evaluating the merger’s overall likely competitive effects. 
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market, it must sacrifice some profit in the upstream market. Its choice of 𝜃𝜃𝑖𝑖𝑖𝑖  captures this 

tradeoff. 

3   Equilibrium 

Our equilibrium concept is subgame perfection. At the start of stage one, every input 

supplier chooses its effective capacity in every auction, characterized by an 𝑚𝑚 × 𝑛𝑛 matrix 

𝜽𝜽. An integrated supplier 𝑖𝑖’s effective capacities across auctions are characterized by the 

vector 𝜽𝜽𝒊𝒊∗, which maximizes 𝑖𝑖’s integrated profits given 𝜽𝜽𝒉𝒉∗ , ℎ ∈ ℳ\𝑖𝑖 , taking into account 

the implied sacrifices to upstream profits and given the mapping of 𝜽𝜽∗ onto downstream 

profits 𝜋𝜋𝑖𝑖𝑑𝑑.24 

Once input suppliers have chosen their effective capacities, procurers run their 

auctions simultaneously. The auction outcomes form a vector of input prices 𝒘𝒘 =
(𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛). Procurers take 𝒘𝒘 as parametric in stage-two competition when choosing 

their final-goods prices. This yields a particular profit realization 𝜋𝜋𝑖𝑖𝑑𝑑 for every integrated 

firm 𝑖𝑖. 

We first characterize the equilibrium in the downstream subgame given input prices 

𝒘𝒘. The effective capacities chosen in stage one map stochastically onto downstream 

profits 𝜋𝜋𝑖𝑖𝑑𝑑 through outcomes 𝒘𝒘. In stage one, integrated suppliers choose their effective 

capacities so that, at the margin, the countervailing effects of foregone upstream profit 

and gained downstream profit just balance. 

3.1  Equilibrium in the Downstream Subgame 

Producers sell differentiated products and compete over prices in Nash-Bertrand 

fashion. The timing is as follows: producers simultaneously choose prices; once demand 

is realized, producers purchase inputs at the predetermined price and produce final 

goods. For ease of exposition, we assume one product per producer. Consumers have 

                                                             
24 Here it becomes evident that specifying the bid function as an ex-ante strategy greatly simplifies the equilibrium 
characterization as strategies depend only on public information. If instead, bids were to be chosen after a supplier 
draws its cost, strategies would depend on private information as in much of the auction literature. We would then 
require an equilibrium concept such as perfect-Bayesian equilibrium which incorporates beliefs about rivals’ private 
information and a plan of action for each cost that a rival may draw.  
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unit demands and choose the product that maximizes utility according to the 

multinomial logit discrete choice model.25 Given final goods prices 𝒑𝒑 = (𝑝𝑝1 ,𝑝𝑝2, … , 𝑝𝑝𝑛𝑛) 

downstream, the probability that a consumer chooses final good 𝑗𝑗 is, 26 

𝑠𝑠𝑖𝑖𝑑𝑑 = exp�𝛿𝛿𝑖𝑖−𝛼𝛼𝑝𝑝𝑖𝑖 �

1+∑ exp(𝛿𝛿ℎ−𝛼𝛼𝑝𝑝ℎ)ℎ∈𝑁𝑁
 ,         𝑗𝑗 ∈ 𝒩𝒩 ,           (14) 

where parameter 𝛿𝛿𝑖𝑖 is the mean quality of good 𝑗𝑗 and parameter 𝛼𝛼 is consumers’ common 

disutility of price. The mean utility of the outside good, product 0, is normalized to zero 

so that exp(𝛿𝛿0 − 𝛼𝛼𝑝𝑝0) = 1 in the denominator of expression (14). We write the choice 

probability as 𝑠𝑠𝑖𝑖𝑑𝑑 in recognition that this is 𝑗𝑗’s expected market share downstream. 

Differentiating equation (14) with respect to a price yields  

𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑

𝑑𝑑𝑝𝑝ℎ
= �

− 𝛼𝛼𝑠𝑠𝑖𝑖𝑑𝑑(1− 𝑠𝑠𝑖𝑖𝑑𝑑) for ℎ = 𝑗𝑗;
𝛼𝛼𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠ℎ𝑑𝑑 for ℎ ≠ 𝑗𝑗.

          (15) 

Firm 𝑗𝑗’s (expected) per-customer profit is then  

𝜋𝜋𝑖𝑖𝑑𝑑 = �𝑝𝑝𝑖𝑖 −𝑤𝑤𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑�𝑠𝑠𝑖𝑖𝑑𝑑,             (16) 

where, as before, 𝑤𝑤𝑖𝑖 is 𝑗𝑗’s realized input cost from the outcome of the procurement stage 

one and 𝑐𝑐𝑖𝑖𝑑𝑑 captures all of 𝑗𝑗’s other marginal costs. The first-order condition for profit 

maximum with respect to own price is  

0 = 𝑠𝑠𝑖𝑖𝑑𝑑 + �𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑 −𝑤𝑤𝑖𝑖�
𝜕𝜕𝑠𝑠𝑖𝑖

𝑑𝑑

𝜕𝜕𝑝𝑝𝑖𝑖
   

   = 𝑠𝑠𝑖𝑖𝑑𝑑�1 − �𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑 − 𝑤𝑤𝑖𝑖�𝛼𝛼(1− 𝑠𝑠𝑖𝑖𝑑𝑑)�,                                                                  (17) 

where the second equality makes use of expression (15). Rearranging terms within square 

brackets on the right-hand side of equation (17), we obtain 𝑗𝑗’s per-customer variable 

margin as 

                                                             
25 Werden and Froeb (1994) introduced the application of logit demand to (horizontal) merger policy. 
26 Indirect utility of consumer 𝑙𝑙 for product 𝑗𝑗 has the form, 𝑢𝑢𝑙𝑙𝑖𝑖 = 𝛿𝛿𝑖𝑖 −𝛼𝛼𝑝𝑝𝑖𝑖 + 𝜖𝜖𝑙𝑙𝑖𝑖. The rightmost term, 𝜖𝜖𝑙𝑙𝑖𝑖 is an 
independently, identically distributed Type I extreme value taste component with scale parameter 1. 
Integrating over the 𝜖𝜖𝑙𝑙𝑖𝑖 terms, taking as given the 𝛿𝛿𝑖𝑖 and 𝑝𝑝𝑖𝑖 terms, gives rise to expression (15).   
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𝜇𝜇𝑖𝑖𝑑𝑑 ≡ 𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑 − 𝑤𝑤𝑖𝑖 = 1

𝛼𝛼(1−𝑠𝑠𝑖𝑖
𝑑𝑑)

 .            (18) 

We now make use of the above expressions to characterize the impact on integrated 

firm 𝑖𝑖’s price and gross profit from changes in its own input price via EDM and changes 

in rivals’ prices via RRC. A change in 𝜃𝜃𝑖𝑖𝑖𝑖  changes the distribution of 𝑤𝑤𝑖𝑖. Since there is no 

closed-form solution in final good prices (as per equations (16) and (18)), the full effect of 

𝜃𝜃𝑖𝑖𝑖𝑖  on 𝜋𝜋𝑖𝑖𝑑𝑑 can only be obtained via numerical methods. For this reason, the results to 

follow should be thought of as “reduced form” and intended to provide intuition for the 

connection between upstream actions and downstream outcomes.  

We get 𝑗𝑗’s “reaction” to ℎ’s price by differentiating equation (18) with respect to 𝑝𝑝ℎ: 

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑝𝑝ℎ

= 1

𝛼𝛼�1−𝑠𝑠𝑖𝑖
𝑑𝑑�

2 �
𝑑𝑑𝑠𝑠𝑖𝑖

𝑑𝑑

𝑑𝑑𝑝𝑝𝑖𝑖

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑝𝑝ℎ

+
𝑑𝑑𝑠𝑠𝑖𝑖

𝑑𝑑

𝑑𝑑𝑝𝑝ℎ
� ,        𝑗𝑗 ∈ 𝒩𝒩, ℎ ∈ 𝒩𝒩 \ 𝑗𝑗 .         (19) 

Substituting equation (15) into (19) and rearranging terms, we have the instantaneous 

reaction function 

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑝𝑝ℎ

=
𝑠𝑠𝑖𝑖
𝑑𝑑𝑠𝑠ℎ

𝑑𝑑

1−𝑠𝑠𝑖𝑖
𝑑𝑑 ,        𝑗𝑗 ∈ 𝒩𝒩, ℎ ∈ 𝒩𝒩 \ 𝑗𝑗.           (20) 

To obtain the pass-through rate of 𝑗𝑗’s input price to its product price, we begin by totally 

differentiating equation (19) with respect to 𝑤𝑤𝑖𝑖: 

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

− 1 = 1

𝛼𝛼�1−𝑠𝑠𝑖𝑖
𝑑𝑑 �

2 �
𝑑𝑑𝑠𝑠𝑖𝑖

𝑑𝑑

𝑑𝑑𝑝𝑝𝑖𝑖

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

+ ∑ 𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑

𝑑𝑑𝑝𝑝ℎ

𝑑𝑑𝑝𝑝ℎ
𝑑𝑑𝑝𝑝𝑖𝑖

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

ℎ∈𝒩𝒩\𝑖𝑖 � .         (21) 

Substituting equations (15) and (19) into equation (21) and rearranging terms then yields  

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

=  �1− 𝑠𝑠𝑖𝑖𝑑𝑑� �1 −  
�𝑠𝑠𝑖𝑖
𝑑𝑑 �

2

1−𝑠𝑠𝑖𝑖
𝑑𝑑  ∑  

�𝑠𝑠ℎ
𝑑𝑑�

2

1−𝑠𝑠ℎ
𝑑𝑑ℎ∈𝒩𝒩\𝑖𝑖 �

−1

.          (22) 

We show in the Appendix that 𝑑𝑑𝑝𝑝𝑖𝑖/𝑑𝑑𝑤𝑤𝑖𝑖 > 0. Thus a decrease in 𝑗𝑗’s input cost owing 

to EDM post-merger will lead 𝑗𝑗 to lower its final good price. While rival producers will 

lower their output prices in turn as per equation (22), 𝑗𝑗’s downstream market share still 

increases on net.    
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 With the foregoing results in hand, we now turn to the impact of a marginal increase 

in a downstream rival 𝑗𝑗’s input cost 𝑤𝑤𝑖𝑖 on integrated firm 𝑖𝑖’s downstream profit. 

Inspection of equation (18) indicates that a change in 𝑤𝑤𝑖𝑖 affects firm 𝑖𝑖’s profit through its 

price, 𝑝𝑝𝑖𝑖 , and through its market share, 𝑠𝑠𝑖𝑖. The first effect is essentially zero due to the 

envelope theorem, so our focus is on the second channel. Differentiating equation (16) 
with respect to 𝑤𝑤𝑖𝑖 yields 

𝑑𝑑𝜋𝜋𝑖𝑖
𝑑𝑑

𝑑𝑑𝑤𝑤𝑖𝑖
= �𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑑𝑑 − 𝑤𝑤𝑖𝑖��

𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑

𝑑𝑑𝑝𝑝𝑖𝑖
⋅ 𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑝𝑝𝑖𝑖

+ 𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑

𝑑𝑑𝑝𝑝𝑖𝑖
⋅ 𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

�  

       = 𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑖𝑖𝑑𝑑 ⋅
𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

  

       = 1
𝛼𝛼
⋅ 𝑑𝑑𝑠𝑠𝑖𝑖

𝑑𝑑

𝑑𝑑𝑝𝑝𝑖𝑖
⋅ 𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑤𝑤𝑖𝑖

                                                                                (23) 

where the second equality is arrived at by substitution via equations (15), (18), and (20). 

The third equality follows by observing that 𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠𝑖𝑖𝑑𝑑 is proportional to 𝑑𝑑𝑠𝑠𝑖𝑖𝑑𝑑/𝑑𝑑𝑝𝑝𝑖𝑖  in (16).  

Integrated firm 𝑖𝑖 benefits from an increase in rival 𝑗𝑗’s input cost as it causes product 

𝑗𝑗’s price to rise and some consumers to switch from product 𝑗𝑗 to product 𝑖𝑖. Expression 

(23) shows that the marginal benefit of RRC downstream to integrated supplier 𝑖𝑖 is 

proportional to the product of the pass-through rate of 𝑗𝑗’s input cost to j’s price and the 

rate at which consumers switch to downstream division 𝑖𝑖 in response to an increase in 𝑝𝑝𝑖𝑖 . 

Inspection of equations (15) and (21) indicate that the downstream benefit of RRC to 

integrated input supplier 𝑖𝑖 is greatest when (a) product 𝑖𝑖’s market share is large, as this 

indicates that 𝑖𝑖 is a more attractive substitute to 𝑗𝑗 and (b) product 𝑗𝑗’s market share is at 

an intermediate value. The larger is 𝑠𝑠𝑖𝑖 (relative to the share of other rival products 

including the outside good), the greater is the fraction of consumers who would 

potentially switch from 𝑗𝑗 to 𝑖𝑖 for a given increase in 𝑝𝑝𝑖𝑖 , while at the same time, the lower 

is the pass-through rate of an increase in 𝑤𝑤𝑖𝑖. The optimal value of 𝑠𝑠𝑖𝑖 from firm 𝑖𝑖’s 

perspective balances these competing effects.  

3.2  Equilibrium in Effective Capacities Upstream 

The headquarters of integrated supplier 𝑖𝑖 chooses 𝜽𝜽𝒊𝒊∗ to maximize expected integrated 

profits of 
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E[𝜋𝜋𝑖𝑖 ] = ∑ E�𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 ⋅ 𝑠𝑠𝑖𝑖𝑑𝑑�𝑖𝑖 + E�𝜇𝜇𝑖𝑖𝑑𝑑 ⋅ 𝑠𝑠𝑖𝑖𝑑𝑑�,        𝑖𝑖 ∈ ℛ, 𝑗𝑗 ∈ 𝒩𝒩,         (24) 

The corresponding system of first-order conditions for integrated firms is then 

𝜕𝜕E�𝜇𝜇𝑖𝑖𝑖𝑖
𝑢𝑢 ⋅𝑠𝑠𝑖𝑖

𝑑𝑑 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
+

𝜕𝜕E�𝜇𝜇𝑖𝑖
𝑑𝑑⋅𝑠𝑠𝑖𝑖

𝑑𝑑 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 0,        𝑖𝑖 ∈ ℛ , 𝑗𝑗 ∈ 𝒩𝒩 ,                     (25) 

where every equation 𝑖𝑖𝑗𝑗 holds fixed the 𝜃𝜃s of all other input suppliers and in all auctions. 

The solution to the system of equations (25) is an 𝑟𝑟 × 𝑛𝑛 submatrix 𝜽𝜽𝑟𝑟∗ , whose main 

diagonal elements are 1 and off-diagonal elements are typically greater than 1. Upstream 

equilibrium is then characterized by an 𝑚𝑚 × 𝑛𝑛 matrix 𝜽𝜽∗ whose elements are 1 except for 

the off-main-diagonal elements of the submatrix 𝜽𝜽𝑟𝑟∗ . 

The first summand in equation (25) is the integrated firm’s expected upstream profit, 

which consists of the gross margin per-unit sale of input into product 𝑗𝑗 (assumed to be 

one-to-one fixed proportion) weighted by total sales of product 𝑗𝑗. Note that a more 

stringent capacity restriction impacts an integrated firm 𝑖𝑖’s expected gross margin on the 

sale of the input only to the extent that it decreases 𝑖𝑖’s probability of winning the auction 

for some producer 𝑗𝑗. This is due to the fact that the auction is second price: the price is 

determined by the lowest losing bid. Conversely, a more stringent capacity restriction 

impacts producer 𝑗𝑗’s market share downstream, 𝑠𝑠𝑖𝑖𝑑𝑑, only to the extent that it increases the 

lowest losing bid in the auction for producer 𝑗𝑗. Thus, a change in 𝜃𝜃𝑖𝑖𝑖𝑖  impacts the product 

of 𝜇𝜇𝑖𝑖𝑖𝑖 and 𝑠𝑠𝑖𝑖𝑑𝑑 only at the point at which an increase in 𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖� causes 𝑖𝑖 to lose the auction 

to supply producer 𝑗𝑗.  

Computing this derivative, we find that the first summand in equation (25) is zero 
evaluated at 𝜃𝜃𝑖𝑖𝑖𝑖 = 1 and strictly negative for 𝜃𝜃𝑖𝑖𝑖𝑖 > 1. 27 Thus, by an envelope theorem, at 

least some RRC is optimal for a vertically integrated firm, given that RRC has a first-order 

effect of increasing the integrated firm’s expected downstream sales but a second-order 
effect on upstream profit evaluated at 𝜃𝜃𝑖𝑖𝑖𝑖 = 1. 

The second summand in (25), 𝜕𝜕E�𝜇𝜇𝑖𝑖𝑑𝑑 ⋅ 𝑠𝑠𝑖𝑖
𝑑𝑑� 𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖� , requires some unpacking. Expression 

(16) expressed an integrated firm’s downstream profit given a vector of realized input 

                                                             
27 The derivation is in the Appendix.  



16 
 

prices, 𝒘𝒘 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛). At the beginning of stage one, the input prices have yet to be 

determined and depend stochastically on each 𝜽𝜽𝒓𝒓∗ . To obtain an expected downstream 

profit E�𝜇𝜇𝑖𝑖𝑑𝑑 ⋅ 𝑠𝑠𝑖𝑖
𝑑𝑑�, firm 𝑖𝑖 integrates over all possible input price outcomes 𝒘𝒘 weighted by 

the probability density of the outcome. The probability densities depend on 𝜽𝜽∗, which 

every 𝑖𝑖 ∈ ℛ anticipates given the structure of the game. A change in 𝜃𝜃𝑖𝑖𝑖𝑖  shifts the 

distribution of 𝑗𝑗’s input price and thereby E�𝜇𝜇𝑖𝑖𝑑𝑑 ⋅ 𝑠𝑠𝑖𝑖
𝑑𝑑�. We discuss the challenges to 

computing equilibrium in Section 4.    

4  Calibration and Simulation 

We treat a vertical merger as moving from a pre-merger equilibrium 𝜽𝜽𝒑𝒑𝒓𝒓𝒑𝒑 with a 

number of integrated firms 𝑟𝑟0 ≤ min{𝑚𝑚− 1, 𝑛𝑛 − 1} to a post-merger equilibrium 𝜽𝜽𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

with 𝑟𝑟0 + 1 integrated firms. Post-merger, all upstream and downstream firms re-

optimize given the new integration structure. 

In this section, we describe how the model may be used to predict the effects of a 

vertical merger using data that might reasonably be available to antitrust practitioners. 

The analysis involves three stages: first, using data to recover the parameters underlying 

the pre-merger equilibrium; next, solving for the merged entity’s optimal RRC strategy; 

and then assessing the expected impact on downstream prices inclusive of both RRC and 

EDM effects. The data assumed to be available are prices and market shares for upstream 

and downstream market participants, their status as integrated or not, and a variable cost 

margin for one firm at each level (typically the merging firms). Additional details on 

derivations are in the Appendix.  

4.1  Calibrating to the Pre-Merger Equilibrium Downstream 

Expression (14) is a closed-form solution for product 𝑗𝑗′𝑠𝑠 market share (𝑗𝑗 ∈ 𝒩𝒩). The 

empirical analogue of (14) is  

�̂�𝑠𝑖𝑖𝑑𝑑 = exp�𝛾𝛾𝑖𝑖 �

1+∑ exp(𝛾𝛾ℎ)ℎ∈𝑁𝑁
,   ℎ, 𝑗𝑗 ∈ 𝒩𝒩,            (26) 

where �̂�𝑠𝑖𝑖𝑑𝑑 is 𝑗𝑗’s observed market share and 𝛾𝛾𝑖𝑖 ≡ 𝛿𝛿𝑖𝑖 − 𝛼𝛼𝑝𝑝𝑖𝑖  is its mean utility. Contained in 

(26) is a system of 𝑛𝑛 equations with 𝑛𝑛 unknowns with a well-known solution:  
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𝛾𝛾�𝑖𝑖 = ln �̂�𝑠𝑖𝑖𝑑𝑑 − ln �̂�𝑠0𝑑𝑑.              (27) 

The component parameters 𝛿𝛿𝑖𝑖 and 𝛼𝛼 can be obtained by incorporating a supply side 

moment. Expression (18) provides an analytical expression for a producer’s per-unit 

variable margin. Given data on the merging firm’s per-unit gross profit downstream (call 

it firm 1), we can express the empirical analogue of expression (18) as  

�̂�𝜇1𝑑𝑑 = 1

𝛼𝛼� �1−𝑠𝑠̂1
𝑑𝑑�

               (28) 

where �̂�𝜇1𝑑𝑑 is firm 1’s downstream per-unit gross variable margin pre-merger, which we 

take to be observable. Rearranging terms in equation (28), we obtain the disutility of price 

parameter:  

𝛼𝛼� = �̂�𝜇1𝑑𝑑(1− �̂�𝑠1𝑑𝑑).              (29) 

Finally, given estimates of �𝛾𝛾�𝑖𝑖�𝑖𝑖∈𝒩𝒩 from equation (27) along with an estimate of the 

average price for each producer ��̂�𝑝𝑖𝑖�𝑖𝑖∈𝒩𝒩, we obtain the mean quality parameter for each 

producer:  

𝛿𝛿𝑖𝑖 = 𝛾𝛾�𝑖𝑖 + 𝛼𝛼��̂�𝑝𝑖𝑖.                         (30) 

4.2  Calibrating to the Pre-Merger Equilibrium Upstream 

We proceed in stages, from the simplest case to more difficult cases. In the simplest 

case, there are no vertically integrated firms pre-merger, every input supplier 𝑖𝑖 chooses 

𝜃𝜃𝑖𝑖𝑖𝑖 = 1, and thus effective capacities equal actual capacities, 𝑘𝑘�𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖.  

The no-prior integration case: 

Expression (6) derives supplier 𝑖𝑖’s market share as the ratio of its capacity to aggregate 

market capacity. With no vertically integrated firms, all buyers are treated symmetrically 

(i.e., 𝜃𝜃𝑖𝑖𝑖𝑖 = 1 for all 𝑗𝑗), so we drop the producer subscripts in much of what follows. Given 

data on upstream market shares, {�̂�𝑠𝑖𝑖𝑢𝑢}, we can identify the ratio of firm-to-aggregate 

capacity by  

�̂�𝑠𝑖𝑖𝑢𝑢 = 𝑘𝑘𝑖𝑖/𝐾𝐾.                                                                                                                              (31) 
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To separately identify the component terms, we turn to average prices for additional 

moments. Recall that in adopting the stochastic approach of WP in expression (1), we 

took 𝐹𝐹(𝑐𝑐) to be uniform on [0,1]. In fitting the model to data, we allow for greater 

flexibility by assuming 𝐹𝐹 is uniform over some interval �𝑐𝑐, 𝑐𝑐 �, where 𝑐𝑐 and 𝑐𝑐 are 

parameters to be estimated. The ex-ante bid function from expression (3) is easily adapted 

to the case where 𝐹𝐹 is uniform on �𝑐𝑐 ,𝑐𝑐� so that,28  

 𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖 ; 𝜃𝜃𝑖𝑖𝑖𝑖� = 𝑐𝑐 − �𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐𝑖𝑖𝑖𝑖
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖

                                                                                       (32) 

Taking 𝐹𝐹(𝑐𝑐) = (𝑐𝑐 − 𝑐𝑐)/(𝑐𝑐 − 𝑐𝑐), we have that the expected input price for supplier 𝑖𝑖 

given that supplier 𝑖𝑖 wins the auction is,  

 𝑊𝑊𝑖𝑖 = 𝑐𝑐 + 𝑐𝑐−𝑐𝑐

𝐾𝐾−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
+ 𝐾𝐾−𝑘𝑘𝑖𝑖

𝐾𝐾−𝑘𝑘𝑖𝑖+1

1

𝑘𝑘𝑖𝑖+1
 

        = 𝑐𝑐 + 𝑐𝑐−𝑐𝑐

𝐾𝐾�1−𝑠𝑠̂𝑖𝑖
𝑢𝑢�+1

+ 𝐾𝐾�1−𝑠𝑠�̂�𝑖
𝑢𝑢 �

𝐾𝐾�1−𝑠𝑠̂𝑖𝑖
𝑢𝑢�+1

1

𝑠𝑠̂𝑖𝑖
𝑢𝑢𝐾𝐾+1

  ,                                                                                                      (33) 

where the second equality in (33) takes 𝑘𝑘𝑖𝑖 = �̂�𝑠𝑖𝑖𝐾𝐾 from (31). There are three unknowns in 
expression (33), 𝐾𝐾,𝑐𝑐, and 𝐿𝐿 = 𝑐𝑐 − 𝑐𝑐; 𝑊𝑊𝑖𝑖  is monotonic in each. It follows that relying on the 

average price for three suppliers is sufficient to identify the upstream model pre-merger. 

In a market with only two suppliers (or where average prices for only two suppliers are 

available), a profit margin for one supplier is sufficient. The per-unit variable-cost 

markup for supplier 𝑖𝑖 conditional on winning the auction is,  

 𝑈𝑈𝑖𝑖 =
�𝑐𝑐̅−𝑐𝑐�𝑘𝑘𝑖𝑖

[𝐾𝐾−𝑘𝑘𝑖𝑖+1][𝑘𝑘𝑖𝑖+1]
 

     =
�𝑐𝑐̅−𝑐𝑐�𝐾𝐾𝑠𝑠̂𝑖𝑖

𝑢𝑢

�𝐾𝐾�1−𝑠𝑠�̂�𝑖
𝑢𝑢 �+1��𝐾𝐾𝑠𝑠̂𝑖𝑖

𝑢𝑢+1�
 .                                                                                                      (34) 

The reliance on expression (34) in calibration may impose constraints on the 

parameter 𝐾𝐾. The issue is that 𝑈𝑈𝑖𝑖  is not monotonic in 𝐾𝐾 when �̂�𝑠𝑖𝑖𝑢𝑢 is close to 0 or 1, whereas 

                                                             
28 Expression (32) reduces to expression (3) if 𝑐𝑐 = 0 and 𝑐𝑐 = 1. In the Appendix, we show that the bid 
function defined by (32) is distributed 𝐺𝐺�⋅ |𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖�, appropriately defined, so that all of the analytical results 
from Section 2 extend to generalized uniform case. In fact, these results can be shown to extent to any 𝐹𝐹 
that is invertible.  
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we can only identify 𝐾𝐾 from a monotonic region. The variable-cost markup expression is 

decreasing in 𝐾𝐾 if 

 𝐾𝐾 > �
1

�̂�𝑠𝑖𝑖
𝑢𝑢�1−�̂�𝑠𝑖𝑖

𝑢𝑢�.                                                                                                                            (35) 

Having identified the pre-merger model from (31) and some combination of (33) and 

(34), we calculate the merged firm’s optimal RRC severity using a hill-climbing routine. 

For each 𝜃𝜃𝑖𝑖𝑖𝑖  that integrated firm 𝑖𝑖 may choose, we can simulate the 𝑛𝑛 procurement 

auctions upstream to determine input prices and firm 𝑖𝑖’s per-unit margin. The input 

prices are fed into equations (14) and (18) to determine downstream prices, market 

shares, and hence profits in the upstream and downstream markets. The simulation is 

repeated thousands of times to obtain expected upstream and downstream profits. We 

then choose an incrementally larger/smaller value of 𝜃𝜃𝑖𝑖𝑖𝑖  and repeat the process to see if 

firm 𝑖𝑖’s expected combined profit increases.  

The following describes the basic properties of the profit function. The first summand 

in equation (24) is the integrated firm’s expected upstream profit, which consists of the 

gross margin per-unit sale of input into product 𝑗𝑗 (assumed to be one-to-one fixed 

proportion) weighted by total sales of product 𝑗𝑗. Note that a more stringent capacity 

restriction impacts an integrated firm 𝑖𝑖’s expected gross margin on the sale of the input 

only to the extent that it decreases 𝑖𝑖’s probability of winning the auction for some 

producer 𝑗𝑗. This is due to the fact that the auction is second price: the price is determined 

by the lowest losing bid. Conversely, a more stringent capacity restriction impacts 

producer 𝑗𝑗’s market share downstream, 𝑠𝑠𝑖𝑖𝑑𝑑, only to the extent that it increases the lowest 

losing bid in the auction for producer 𝑗𝑗. Thus, a change in 𝜃𝜃𝑖𝑖𝑖𝑖  impacts the product of 𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢  

and 𝑠𝑠𝑖𝑖𝑑𝑑 only at the point at which at increase in 𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖� causes 𝑖𝑖 to lose the auction to 

supply producer 𝑗𝑗.  

To make explicit the connection between the right-hand side of (14) and upstream 

random variables, let 𝑠𝑠𝑖𝑖𝑑𝑑 = 𝜎𝜎𝑖𝑖�𝑤𝑤1, … ,𝑤𝑤𝑖𝑖, … ,𝑤𝑤𝑛𝑛� denote producer 𝑗𝑗’s market share as a 

function of input prices, {𝑤𝑤𝑙𝑙}. The input prices, {𝑤𝑤𝑙𝑙}, are treated as random variables by 
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integrated firm 𝑖𝑖 when it is choosing its RRC severity. Letting 𝑔𝑔�⋅ |𝐾𝐾�−𝑖𝑖𝑖𝑖� denote the 

density of 𝑏𝑏−𝑖𝑖 = min
ℎ≠𝑖𝑖

{𝑏𝑏ℎ},29 we can express the first summand in expression (25) as, 

𝜕𝜕E�𝜇𝜇𝑖𝑖𝑖𝑖
𝑢𝑢⋅𝑠𝑠𝑖𝑖

𝑑𝑑�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= − 𝜕𝜕𝜕𝜕�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖  
×  

              �∫ ∫ �𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖� − 𝑐𝑐�𝜎𝜎�𝑤𝑤1, … , 𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�, … ,𝑤𝑤𝑚𝑚�𝑔𝑔�𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝐾𝐾�𝑖𝑖�𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)𝑑𝑑𝐺𝐺𝒘𝒘−𝒋𝒋
1
0 �,  (36)                                   

where 𝑤𝑤𝑖𝑖 denotes producer 𝑗𝑗’s (stochastic) input price, and  

 𝜕𝜕𝜕𝜕�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖  
= −�𝑐𝑐 − 𝑐𝑐� ln �

𝑐𝑐−𝑐𝑐𝑖𝑖𝑖𝑖
𝑐𝑐−𝑐𝑐

� ⋅ �
𝑐𝑐−𝑐𝑐𝑖𝑖𝑖𝑖
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖

> 0                                                             (37) 

by differentiating expression (35). Thus, a marginal increase in 𝜃𝜃𝑖𝑖𝑖𝑖  decreases 𝑖𝑖’s upstream 

profit, strictly so for 𝜃𝜃𝑖𝑖𝑖𝑖 > 1. We also have that successive increases in 𝜃𝜃𝑖𝑖𝑖𝑖  must eventually 

lead to smaller reductions in expected upstream profit since in the limit as 𝜃𝜃𝑖𝑖𝑖𝑖 → ∞, 

𝑏𝑏�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖� → 𝑐𝑐, and hence 𝑔𝑔�𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝐾𝐾�𝑖𝑖� → 0. Thus, the first summand in (25) is well 

behaved.  

The second summand in equation (25) is the integrated firm’s expected downstream 

profit, which consists of the gross margin per-unit sale of firm 𝑖𝑖’s final product weighted 

by total sales of the product. An increase in 𝜃𝜃𝑖𝑖𝑖𝑖  changes the distribution of 𝑤𝑤𝑖𝑖 making 

higher values more likely. Should a higher value of 𝑤𝑤𝑖𝑖 be realized, firm 𝑖𝑖’s downstream 

profit is increased via expression (23). The profit-increasing impact of increasing 𝜃𝜃𝑖𝑖𝑖𝑖  must 

eventually diminish since in the limit as 𝜃𝜃𝑖𝑖𝑖𝑖 → ∞, 𝑏𝑏�𝑐𝑐: 𝜃𝜃𝑖𝑖𝑖𝑖� → 𝑐𝑐, wherein firm 𝑖𝑖 loses the 

ability to shift the distribution of 𝑤𝑤𝑖𝑖 any further.  

The prior integration case: 

Now consider the case where some subset of firms, ℛ, are vertically integrated prior 

to the merger in question. There is an 𝑟𝑟 × 𝑛𝑛 submatrix 𝜽𝜽𝑟𝑟∗, whose main diagonal elements 

are 1 and off-diagonal elements are typically greater than 1, which describes the pre-

merger RRC severities of these integrated firms. In this case, the calibration exercise is 

more challenging. Because integrated firm ℎ’s bid is specific to the producer, the 

                                                             
29 This derivation allows for the possibility that other firms are integrated, which will be useful later on. In 
the current case where no firms are integrated prior to the merger in question, 𝑏𝑏−𝑖𝑖𝑖𝑖 = min

ℎ≠𝑖𝑖
�𝑐𝑐ℎ𝑖𝑖� and its 

density is 𝑔𝑔(𝑐𝑐|𝐾𝐾−𝑖𝑖) = 𝑑𝑑𝐺𝐺(𝑐𝑐|𝐾𝐾−𝑖𝑖)/𝑑𝑑𝑐𝑐.  
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probability that it wins a given auction, 𝑠𝑠ℎ𝑖𝑖𝑑𝑑 = 𝑘𝑘� ℎ𝑖𝑖/𝐾𝐾�𝑖𝑖, will vary by auction. We do not 

observe these win probabilities only whether or not firm ℎ won the business. Input prices 

and profit margins do not help since the integration-analogue of expressions (33) and (34) 

replace each instance of 𝐾𝐾 with 𝐾𝐾�𝑖𝑖, where the latter varies by auction.30 Even if we observe 

all 𝑛𝑛 input prices, we have 𝑚𝑚 + 2 + 𝑟𝑟(𝑛𝑛 − 1) > 𝑛𝑛 unknowns to solve for. 

Incorporating supplemental data on bids placed by integrated firms, including bids 

in auctions they did not win, allows us to make progress. Each bid in 𝒃𝒃�, the set of observed 

bids, reflects the firm’s choice of 𝜃𝜃ℎ𝑖𝑖, which is made so as to satisfy the optimality 

condition in expression (25). The optimal value of 𝜃𝜃ℎ𝑖𝑖 reflects the vector of capital, 

{𝑘𝑘𝑖𝑖}𝑖𝑖∈ℳ, the vector of product quality parameters, �𝛿𝛿𝑖𝑖�𝑖𝑖∈𝒩𝒩, and the firm’s equilibrium 

guess as to its rivals’ RRC severities, �𝜃𝜃𝑖𝑖𝑖𝑖�𝑖𝑖∈ℛ\ℎ . The product-quality parameters can be 

calibrated without regard to RRC severities via equations (26)-(30). It remains to identify 
{𝑘𝑘𝑖𝑖}𝑖𝑖∈ℳ and �𝜃𝜃𝑖𝑖𝑖𝑖�𝑖𝑖∈ℛ, along with �𝑐𝑐, 𝑐𝑐�.  

We propose the following maximum likelihood routine.  

(0) Begin with a guess as to each element of {𝑘𝑘𝑖𝑖}𝑖𝑖∈ℳ and �𝑐𝑐, 𝑐𝑐�. A plausible starting 

point would be the values suggested by (31)-(33) from the no integration case.  

(1) Next, solve for each integrated firm’s vector of RRC severities, �𝜃𝜃𝑖𝑖𝑖𝑖�𝑖𝑖∈ℳ under the 

assumption that all 𝜃𝜃ℎ𝑖𝑖, ℎ ≠ 𝑖𝑖, are equal to 1. Plug the “first round” of RRC 

severities for each rival ℎ ≠ 𝑖𝑖 into 𝑖𝑖’s profits and re-solve for the optimal �𝜃𝜃𝑖𝑖𝑖𝑖 �𝑖𝑖∈ℳ; 

continue to iterate in this way until a minimum distance threshold is met for all 

integrated suppliers. Let 𝜃𝜃�𝑖𝑖𝑖𝑖 denote an element of the set of optimal RRC severities. 

(2)  The distributional parameters, �𝑐𝑐, 𝑐𝑐�, can be identified from the integration-

analogue of (32) and (33) using the 𝑘𝑘� 𝑖𝑖𝑖𝑖 and 𝐾𝐾�𝑖𝑖 derived in Step 1.  

(3) Calculate the likelihood of the observed bids, 𝒃𝒃�, given that each element, 𝑏𝑏�𝑖𝑖𝑖𝑖, is 

drawn from 𝐺𝐺�⋅ |𝑘𝑘𝑖𝑖/𝜃𝜃�𝑖𝑖𝑖𝑖�.  

(4) Next, return to the guess as to {𝑘𝑘𝑖𝑖}𝑖𝑖∈ℳ  and update the guess. To the extent that the 

initial values in Step 0 understate the 𝑘𝑘𝑖𝑖 for integrated firms, this step should adjust 

                                                             
30 See expressions (A31) and (A32) in the Appendix. 
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𝑘𝑘𝑖𝑖 upward for firms for which the 𝜃𝜃�𝑖𝑖𝑖𝑖 significantly exceed 1. Given the revised 

guess, repeat Steps 1-3.  

(5) After sufficient repetitions of Steps 1-4, select the {𝑘𝑘𝑖𝑖} corresponding to the 

maximum likelihood.  

The above routine identifies the pre-merger model. We then solve for the merged 

firm’s optimal RRC severities, while also accounting for equilibrium reactions in the RRC 

severities of rival integrated firms, following the approach of Step (1) above.     

5  Conclusion 

We develop a two-stage model of vertical merger with input procurement auctions in the 

first (upstream) stage.  Our model presents an analysis of the type that was reportedly 

used by DOJ as part of its assessment in the CVS-Aetna merger case of the potential for 

harm from raising rival insurers’ costs (RRC) for pharmacy benefit management services.  

We treat RRC as akin to “capacity restriction” in procurement auctions, with vertically 

integrated firms bidding higher than their realized costs as if their “capacities” to realize 

low costs are smaller than they are. In our setting, vertical merger also entails an 

elimination of double markup (EDM) effect. Given the interplay between RRC and EDM 

effects, a vertical merger’s net effect on downstream prices is an empirical question. We 

describe how our simulation model can be implemented to answer this question, both for 

the case of no prior vertical integration and the more complex case of prior integration in 

the industry.  
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Appendix 

Derivation of equations (2) and (6): 

WP derive equation (2) for the more general case, but it may help the reader to show the 

derivation for our special case of 𝐹𝐹(𝑐𝑐) = 𝑐𝑐. Clearly the derivation of equation (6) is the 

same as for equation (2), mutatis mutandis. 

Given a cost realization 𝑐𝑐𝑖𝑖, the probability that input supplier 𝑖𝑖 wins any given auction 

(assuming no RRC for now, as in equation (2)) is 

Pr{𝑖𝑖 wins|𝑐𝑐𝑖𝑖 = 𝑐𝑐} = ∏ [1− 𝐺𝐺(𝑐𝑐𝑖𝑖|𝑘𝑘ℎ)]ℎ∈𝑀𝑀\{𝑖𝑖} = (1 − 𝑐𝑐𝑖𝑖)𝐾𝐾−𝑘𝑘𝑖𝑖.   (A1) 

Integration then yields 

𝑠𝑠𝑖𝑖𝑢𝑢 = ∫ (1− 𝑐𝑐)𝐾𝐾−𝑘𝑘𝑖𝑖𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)
1
0 ,       (A2) 

Now 𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) = 𝑘𝑘𝑖𝑖(1− 𝑐𝑐)𝑘𝑘𝑖𝑖−1, so (A2) becomes 

𝑠𝑠𝑖𝑖𝑢𝑢 = 𝑘𝑘𝑖𝑖 ∫ (1 − 𝑐𝑐)𝐾𝐾−1𝑑𝑑𝑐𝑐1
0 .        (A3) 

The antiderivative of (1− 𝑐𝑐)𝐾𝐾−1 is 1
𝐾𝐾

(1 − 𝑐𝑐)𝐾𝐾 and �1
𝐾𝐾

(1 − 𝑐𝑐)𝐾𝐾�
0

1
= 1

𝐾𝐾
, therefore 𝑠𝑠𝑖𝑖𝑢𝑢 = 𝑘𝑘𝑖𝑖 𝐾𝐾⁄  ■ 

Derivation of equation (5): 

Let 𝑐𝑐𝑖𝑖𝑖𝑖 be 𝑖𝑖’s realized cost in auction 𝑗𝑗. Conditional on drawing 𝑐𝑐𝑖𝑖𝑖𝑖 and bidding according to 

𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖�, the probability that 𝑖𝑖’s bid in auction 𝑗𝑗 is less than some value 𝑐𝑐 is 

Pr�𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖; 𝜃𝜃𝑖𝑖𝑖𝑖� < 𝑐𝑐�𝑘𝑘𝑖𝑖� = Pr �1 − �1 − 𝑐𝑐𝑖𝑖𝑖𝑖�
𝜃𝜃𝑖𝑖𝑖𝑖 < 𝑐𝑐�𝑘𝑘𝑖𝑖�  

= Pr �𝑐𝑐𝑖𝑖𝑖𝑖 < 1 − (1− 𝑐𝑐)
1
𝜃𝜃𝑖𝑖𝑖𝑖 �𝑘𝑘𝑖𝑖� = 1 − (1− 𝑐𝑐)

𝑘𝑘𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 = 𝐺𝐺 �𝑐𝑐� 𝑘𝑘𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖
� = 𝐺𝐺�𝑐𝑐�𝑘𝑘� 𝑖𝑖𝑖𝑖� ■ 

Proof that 𝟏𝟏 �𝑲𝑲�𝒋𝒋 + 𝟏𝟏�⁄  in equation (8) is the expected value of the lowest bid in auction j: 

Let 𝑏𝑏𝑖𝑖 ≡ min�𝑏𝑏ℎ𝑖𝑖�ℎ∈𝑀𝑀 denote the lowest bid (i.e., the winning bid) among all 𝑚𝑚 input 

suppliers in auction 𝑗𝑗. To calculate E�𝑏𝑏𝑖𝑖�, we begin with its cdf,  

Pr�𝑏𝑏𝑗𝑗 < 𝑏𝑏� = 1− Pr�𝑏𝑏𝑗𝑗 > 𝑏𝑏� = 1− ∏ Pr�𝑏𝑏 > 𝑏𝑏𝑗𝑗� = 1 −∏ �1 − 𝑏𝑏𝑗𝑗�
𝑘𝑘� 𝑖𝑖𝑖𝑖

𝑖𝑖∈𝑀𝑀𝑖𝑖∈𝑀𝑀   
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           = 1− �1 − 𝑏𝑏𝑗𝑗�
𝐾𝐾�𝑖𝑖 = 𝐺𝐺(𝑏𝑏𝑗𝑗|𝐾𝐾�𝑖𝑖) .     (A4) 

Its density is  

𝑑𝑑𝐺𝐺(𝑏𝑏𝑗𝑗|𝐾𝐾�𝑖𝑖) = 𝐾𝐾�𝑖𝑖�1 − 𝑏𝑏𝑗𝑗�
𝐾𝐾�𝑖𝑖−1𝑑𝑑𝑏𝑏𝑗𝑗 ,       (A5) 

from which it follows that  

E�𝑏𝑏𝑗𝑗� = ∫ 𝑏𝑏𝑗𝑗 𝑑𝑑𝐺𝐺(𝑏𝑏𝑗𝑗|𝐾𝐾�𝑖𝑖) =1
0 ∫ 𝑏𝑏𝑗𝑗𝐾𝐾�𝑖𝑖�1 − 𝑏𝑏𝑗𝑗�

𝐾𝐾�𝑖𝑖−1𝑑𝑑𝑏𝑏𝑗𝑗
1
0  .     (A6) 

Integrating by parts then yields 

E�𝑏𝑏𝑗𝑗� = �−𝑏𝑏𝑗𝑗�1− 𝑏𝑏𝑗𝑗�
𝐾𝐾�𝑖𝑖 �

0

1
− �− 1

𝐾𝐾�𝑖𝑖+1
�1 − 𝑏𝑏𝑗𝑗�

𝐾𝐾�𝑖𝑖+1�
0

1
= 1

𝐾𝐾�𝑖𝑖+1
  ■   (A7) 

Derivation of equation (9): 

Let  𝑏𝑏−𝑖𝑖,𝑖𝑖 ≡ min
ℎ∈𝑀𝑀\𝑖𝑖

�𝑏𝑏ℎ𝑖𝑖� be the lowest bid in auction 𝑗𝑗 among input suppliers ℎ ≠ 𝑖𝑖. 

Conditional on winning auction 𝑗𝑗 with a bid of 𝑏𝑏𝑖𝑖𝑖𝑖, supplier 𝑖𝑖’s net margin is  𝑏𝑏−𝑖𝑖,𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖. 

To obtain the expected net margin, we proceed in two steps. We integrate over outcomes 

𝑏𝑏−𝑖𝑖,𝑖𝑖, then integrate over outcomes 𝑏𝑏𝑖𝑖𝑖𝑖, conditional on every possible realization 𝑏𝑏−𝑖𝑖,𝑖𝑖. 

Taking the expectation over 𝑏𝑏−𝑖𝑖,𝑖𝑖 while conditioning on 𝑏𝑏𝑖𝑖𝑖𝑖, 𝑖𝑖’s ex post margin is 

E�𝑏𝑏−𝑖𝑖,𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖|𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�× Pr�𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�.     (A8) 

To calculate this, we need the density of 𝑏𝑏−𝑖𝑖,𝑖𝑖. We have 

Pr�𝑏𝑏−𝑖𝑖,𝑖𝑖 < 𝑏𝑏𝑖𝑖𝑖𝑖� = 1− Πℎ∈𝑀𝑀\𝑖𝑖 Pr�𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�  

 = 1− �1 − 𝑏𝑏−𝑖𝑖,𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖 = 𝐺𝐺�𝑏𝑏𝑖𝑖𝑖𝑖|𝐾𝐾�𝑖𝑖 − 𝑘𝑘� 𝑖𝑖𝑖𝑖�.   (A9) 

The density of 𝑏𝑏−𝑖𝑖,𝑖𝑖 is then 

𝑑𝑑𝐺𝐺�𝑏𝑏𝑖𝑖𝑖𝑖|𝐾𝐾�𝑖𝑖 − 𝑘𝑘�𝑖𝑖𝑖𝑖� = �𝐾𝐾�𝑖𝑖 − 𝑘𝑘� 𝑖𝑖𝑖𝑖��1 −𝑏𝑏−𝑖𝑖,𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖−1𝑑𝑑𝑏𝑏−𝑖𝑖,𝑖𝑖 .   (A10) 

Thus  

E�𝑏𝑏−𝑖𝑖,𝑖𝑖 |𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�× Pr�𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖� = ∫ 𝑏𝑏−𝑖𝑖,𝑖𝑖𝑑𝑑𝐺𝐺�𝑏𝑏𝑖𝑖𝑖𝑖|𝐾𝐾�𝑖𝑖 − 𝑘𝑘�𝑖𝑖𝑖𝑖�
1
𝜕𝜕𝑖𝑖𝑖𝑖

    

     = �𝑏𝑏−𝑖𝑖,𝑖𝑖𝐺𝐺�𝑏𝑏−𝑖𝑖,𝑖𝑖 |𝐾𝐾�𝑖𝑖 − 𝑘𝑘� 𝑖𝑖𝑖𝑖��𝜕𝜕𝑖𝑖𝑖𝑖
1  −  ∫ 𝐺𝐺�𝑏𝑏−𝑖𝑖,𝑖𝑖|𝐾𝐾�𝑖𝑖 − 𝑘𝑘�𝑖𝑖𝑖𝑖�𝑑𝑑𝑏𝑏−𝑖𝑖,𝑖𝑖

1
𝜕𝜕𝑖𝑖𝑖𝑖
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    = 𝑏𝑏−𝑖𝑖,𝑖𝑖 �1 − �1 − 𝑏𝑏−𝑖𝑖,𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖 �

𝜕𝜕𝑖𝑖𝑖𝑖

1
−  ∫ �1 − �1− 𝑏𝑏−𝑖𝑖,𝑖𝑖�

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖 �1
𝜕𝜕𝑖𝑖𝑖𝑖

𝑑𝑑𝑏𝑏−𝑖𝑖,𝑖𝑖  

    = 1− 𝑏𝑏𝑖𝑖𝑖𝑖 �1 − �1 −𝑏𝑏𝑖𝑖𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖�  −  �1 − 𝑏𝑏𝑖𝑖𝑖𝑖� − �

�1−𝜕𝜕−𝑖𝑖,𝑖𝑖�
𝐾𝐾� 𝑖𝑖−𝑘𝑘�𝑖𝑖𝑖𝑖+1

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
�
𝜕𝜕𝑖𝑖𝑖𝑖

1

 

     = 𝑏𝑏𝑖𝑖𝑖𝑖�1− 𝑏𝑏𝑖𝑖𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖 + � 1

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
� �1 − 𝑏𝑏𝑖𝑖𝑖𝑖�

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1,    (A11) 

where the second line in (A11) uses integration by parts. From (A11) it follows that 

E�𝜋𝜋�𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖𝑖𝑖� = E�𝑏𝑏−𝑖𝑖,𝑖𝑖|𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�× Pr�𝑏𝑏−𝑖𝑖,𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖� − 𝑏𝑏𝑖𝑖𝑖𝑖�1−𝐺𝐺�𝑏𝑏−𝑖𝑖,𝑖𝑖|𝐾𝐾�𝑖𝑖 − 𝑘𝑘� 𝑖𝑖𝑖𝑖��   

= �𝑏𝑏𝑖𝑖𝑖𝑖�1− 𝑏𝑏𝑖𝑖𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖 + � 1

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
� �1 −𝑏𝑏𝑖𝑖𝑖𝑖�

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1� − 𝑏𝑏𝑖𝑖𝑖𝑖�1− 𝑏𝑏𝑖𝑖𝑖𝑖�
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖   

= � 1

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
� �1 −𝑏𝑏𝑖𝑖𝑖𝑖�

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1.      (A12) 

Finally, using equation (A12), 𝑖𝑖’s unconditional expected net margin in auction 𝑗𝑗 is  

E�𝜇𝜇�𝑖𝑖𝑖𝑖� = ∫ E�𝜇𝜇�𝑖𝑖𝑖𝑖|𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏�𝑑𝑑𝐺𝐺(𝑏𝑏|𝑘𝑘� 𝑖𝑖𝑖𝑖
1
0 )  

  = ∫ �� 1

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
� (1− 𝑏𝑏)𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1�1

0 𝑘𝑘�𝑖𝑖𝑖𝑖(1 −𝑏𝑏)𝑘𝑘� 𝑖𝑖𝑖𝑖−1𝑑𝑑𝑏𝑏 

  = 𝑘𝑘� 𝑖𝑖𝑖𝑖
𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1

∫ (1− 𝑏𝑏)𝐾𝐾�𝑖𝑖 𝑑𝑑𝑏𝑏1
0 = 𝑘𝑘� 𝑖𝑖𝑖𝑖

�𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�
�−(1− 𝑏𝑏)𝐾𝐾�𝑖𝑖+1�

0

1
 

= 𝑘𝑘� 𝑖𝑖𝑖𝑖
�𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

= 𝑘𝑘� 𝑖𝑖𝑖𝑖
�𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

  ■     

Derivation of equation (11): 

Differentiating equation (8) with respect to 𝜃𝜃𝑖𝑖𝑖𝑖  we have 

𝜕𝜕E�𝑤𝑤𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝜕𝜕

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
� 1

𝐾𝐾�𝑖𝑖+1
� + 𝜕𝜕E�𝜇𝜇�𝑖𝑖𝑖𝑖 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
+ ∑ 𝜕𝜕E�𝜇𝜇�ℎ𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
ℎ∈𝑀𝑀\𝑖𝑖  .     (A13) 

We consider in turn each of the three derivatives on the right-hand side of (A13). First, 

𝜕𝜕

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
� 1

𝐾𝐾�𝑖𝑖+1
� =  − 1

�𝐾𝐾�𝑖𝑖+1�
2
𝜕𝜕𝐾𝐾�𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖

 =  𝑘𝑘� 𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�𝑖𝑖+1�

2 > 0 .     (A14) 

Next 

𝜕𝜕E�𝜇𝜇� 𝑖𝑖𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
 = −𝑘𝑘� 𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�
+

𝑘𝑘� 𝑖𝑖𝑖𝑖
2

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�
2  
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= −𝑘𝑘� 𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

�1 − 𝑘𝑘� 𝑖𝑖𝑖𝑖
𝐾𝐾�𝑖𝑖+1

�  

= −𝑘𝑘� 𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�𝑖𝑖+1�

2 < 0.        (A15) 

Note that the expressions in (A14) and (A15) cancel. Finally, for bidders ℎ ≠ 𝑖𝑖, note that 

𝜕𝜕𝐾𝐾�−ℎ ,𝑖𝑖

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝜕𝜕𝐾𝐾�𝑖𝑖

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝜕𝜕𝑘𝑘� 𝑖𝑖𝑖𝑖

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= − 𝑘𝑘� 𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖
. 

Thus 

𝜕𝜕E�𝜇𝜇�ℎ𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝑘𝑘� 𝑖𝑖𝑖𝑖𝑘𝑘� ℎ𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−ℎ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�
� 1

𝐾𝐾�−ℎ,𝑖𝑖+1
+ 1

𝐾𝐾�𝑖𝑖+1
�  

= 𝑘𝑘� 𝑖𝑖𝑖𝑖𝑘𝑘� ℎ𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−ℎ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

� 𝐾𝐾�𝑖𝑖+𝐾𝐾�−ℎ,𝑖𝑖+2
�𝐾𝐾�−ℎ ,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

�  

= 𝑘𝑘� 𝑖𝑖𝑖𝑖𝑘𝑘� ℎ𝑖𝑖�𝐾𝐾�𝑖𝑖+𝐾𝐾�−ℎ,𝑖𝑖+2�

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−ℎ,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2 > 0, 

and therefore     

𝜕𝜕E�𝑤𝑤𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= 𝑘𝑘� 𝑖𝑖𝑖𝑖

𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�𝑖𝑖+1�
2  ∑ 𝑘𝑘�ℎ𝑖𝑖�𝐾𝐾�𝑖𝑖+𝐾𝐾�−ℎ,𝑖𝑖+2�

�𝐾𝐾�−ℎ,𝑖𝑖+1�
2ℎ∈𝑀𝑀\𝑖𝑖 > 0 ■     

Derivation of equation (12): 

𝜉𝜉𝑖𝑖𝑖𝑖 is the expected value of the bid-cost spread that 𝑖𝑖 earns in auction 𝑗𝑗 conditional on 

winning the auction: 

𝜉𝜉𝑖𝑖𝑖𝑖 = E�𝑏𝑏𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖|𝑖𝑖 wins 𝑗𝑗�× Pr{𝑖𝑖 wins 𝑗𝑗}.      

From equation (3), the spread for a given realization 𝑐𝑐 can be written as 

𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖� − 𝑐𝑐 = (1− 𝑐𝑐)�1 − (1− 𝑐𝑐)1−𝜃𝜃𝑖𝑖𝑖𝑖 �.     (A16) 

Bidder 𝑖𝑖 wins auction 𝑗𝑗 when the minimum of rival bids, 𝑏𝑏−𝑖𝑖,𝑖𝑖, is greater than 𝑖𝑖’s bid, 

𝑏𝑏�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖�. Recall that the minimum of all 𝑚𝑚 bids 𝑏𝑏𝑖𝑖 is distributed 𝐺𝐺�𝑐𝑐|𝐾𝐾�𝑖𝑖�. Likewise, the 

minimum of all rival bids 𝑏𝑏−𝑖𝑖,𝑖𝑖 is distributed 𝐺𝐺�𝑐𝑐|𝐾𝐾�−𝑖𝑖,𝑖𝑖�. It follows that 𝑖𝑖 wins auction 𝑗𝑗 

with probability  

Pr�𝑏𝑏�𝑐𝑐 ; 𝜃𝜃𝑖𝑖𝑖𝑖� < 𝑏𝑏−𝑖𝑖,𝑗𝑗� = 1− 𝐺𝐺�𝑏𝑏�𝑐𝑐 ; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝐾𝐾�−𝑖𝑖,𝑖𝑖� 
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           = �1 − 𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖��
𝐾𝐾�−𝑖𝑖 ,𝑖𝑖

 

= (1− 𝑐𝑐)𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖       (A17) 

Recall also that 𝑐𝑐𝑖𝑖𝑖𝑖 is distributed 𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖), so its density is 

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) = 𝑘𝑘𝑖𝑖(1− 𝑐𝑐)𝑘𝑘𝑖𝑖−1.        (A18) 

Relying on (A17) and (A18), the expected spread can be written as 

𝜉𝜉𝑖𝑖𝑖𝑖 = ∫ (1− 𝑐𝑐)�1 − (1 − 𝑐𝑐)𝜃𝜃𝑖𝑖𝑖𝑖−1�Pr�𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖� < 𝑏𝑏−𝑖𝑖,𝑗𝑗�
1
0 𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)  

      = 𝑘𝑘𝑖𝑖 ∫ (1− 𝑐𝑐)𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�1 − (1 − 𝑐𝑐)𝜃𝜃𝑖𝑖𝑖𝑖−1�𝑑𝑑𝑐𝑐1
0 ,  

     = 𝑘𝑘𝑖𝑖 �
1

𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1
− 1

𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1�
� 

 = 𝑘𝑘𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖−1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1��𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖 �𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1��
 .      (A19) 

Given that 𝐾𝐾�𝑖𝑖 ≡ 𝑘𝑘�𝑖𝑖𝑖𝑖 +𝐾𝐾�−𝑖𝑖,𝑖𝑖 , the term �𝑘𝑘𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖�𝐾𝐾�−𝑖𝑖,𝑖𝑖 + 1�� in the denominator of (A19) can 

be written as 𝜃𝜃𝑖𝑖𝑖𝑖�𝐾𝐾�𝑖𝑖 + 1�. Thus (A19) can be rewritten as 

𝜉𝜉𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖
�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

  ■ 

Derivation of equation (13): 

To begin, it is helpful to rewrite equation (12) as 

𝜉𝜉𝑖𝑖𝑖𝑖 = �1 − 1
𝜃𝜃𝑖𝑖𝑖𝑖
� 𝑘𝑘𝑖𝑖
�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

 .       (A20) 

Differentiating equation (A20) with respect to 𝜃𝜃𝑖𝑖𝑖𝑖  yields 

𝜕𝜕𝜉𝜉𝑖𝑖𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖

= 𝑘𝑘� 𝑖𝑖𝑖𝑖
𝜃𝜃𝑖𝑖𝑖𝑖 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�

+ �1 − 1
𝜃𝜃𝑖𝑖𝑖𝑖
� � −𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

+
𝑘𝑘� 𝑖𝑖𝑖𝑖
2

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1��𝐾𝐾�𝑖𝑖+1�
2�  

= 𝑘𝑘�𝑖𝑖𝑗𝑗
𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�

+ 𝜃𝜃𝑖𝑖𝑗𝑗−1

𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�
� −𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑗𝑗
𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1

+
𝑘𝑘�𝑖𝑖𝑗𝑗

2

𝐾𝐾�𝑗𝑗+1
�  

= 𝑘𝑘�𝑖𝑖𝑗𝑗
𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�

+ 𝜃𝜃𝑖𝑖𝑗𝑗−1

𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�
�
−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑗𝑗�𝐾𝐾�𝑗𝑗+1�+𝑘𝑘�𝑖𝑖𝑗𝑗

2 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�
�  

=
𝑘𝑘�𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1�+�𝜃𝜃𝑖𝑖𝑗𝑗−1��−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑗𝑗�𝐾𝐾�𝑗𝑗+1�+𝑘𝑘�𝑖𝑖𝑗𝑗

2 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��

𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1�
2�𝐾𝐾�𝑗𝑗+1�

2  .   (A21) 



29 
 

Now note that the derivative of net margin in equation (A15) can be rewritten as 

𝜕𝜕E�𝜇𝜇� 𝑖𝑖𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
= −𝑘𝑘� 𝑖𝑖𝑖𝑖�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1�

2

𝜃𝜃𝑖𝑖𝑖𝑖 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1�
2�𝐾𝐾�𝑖𝑖+1�

2 .       (A22) 

Summing together (A21) and (A22) then yields the derivative of gross margin: 

𝜕𝜕E�𝜇𝜇𝑖𝑖𝑖𝑖
𝑢𝑢 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
=

𝑘𝑘�𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��𝐾𝐾�𝑗𝑗+1−�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��+�𝜃𝜃𝑖𝑖𝑗𝑗−1��−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑗𝑗�𝐾𝐾�𝑗𝑗+1�+𝑘𝑘�𝑖𝑖𝑗𝑗
2 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1��

𝜃𝜃𝑖𝑖𝑗𝑗�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑗𝑗𝐾𝐾�−𝑖𝑖,𝑗𝑗+1�
2�𝐾𝐾�𝑗𝑗+1�

2 . (A23) 

Noting that 𝑘𝑘𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖 + 1 = 𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖 + 1, equation (A23) can be rewritten as 

𝜕𝜕E�𝜇𝜇𝑖𝑖𝑖𝑖
𝑢𝑢 �

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
=

−�𝜃𝜃𝑖𝑖𝑖𝑖−1�𝑘𝑘� 𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖 �𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�+�𝜃𝜃𝑖𝑖𝑖𝑖−1��−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�𝐾𝐾�𝑖𝑖+1�+𝑘𝑘� 𝑖𝑖𝑖𝑖
2 �𝜃𝜃𝑖𝑖𝑖𝑖 𝐾𝐾�𝑖𝑖+1��

𝜃𝜃𝑖𝑖𝑖𝑖 �𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   

= �𝜃𝜃𝑖𝑖𝑖𝑖−1
𝜃𝜃𝑖𝑖𝑖𝑖

�
−𝑘𝑘� 𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖 �𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖�𝐾𝐾�𝑖𝑖+1�+𝑘𝑘� 𝑖𝑖𝑖𝑖

2 �𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   

= �𝜃𝜃𝑖𝑖𝑖𝑖−1
𝜃𝜃𝑖𝑖𝑖𝑖

� 𝑘𝑘
� 𝑖𝑖𝑖𝑖�𝑘𝑘� 𝑖𝑖𝑖𝑖−𝐾𝐾�𝑖𝑖 ��𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�𝐾𝐾�𝑖𝑖+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   

= �𝜃𝜃𝑖𝑖𝑖𝑖−1
𝜃𝜃𝑖𝑖𝑖𝑖

� −𝑘𝑘
� 𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�−𝑘𝑘𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�𝐾𝐾�𝑖𝑖+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   

= �𝜃𝜃𝑖𝑖𝑖𝑖−1
𝜃𝜃𝑖𝑖𝑖𝑖

�−𝑘𝑘
� 𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�𝑖𝑖+1�−𝜃𝜃𝑖𝑖𝑖𝑖𝑘𝑘� 𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖�𝐾𝐾�𝑖𝑖+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   

= − �𝜃𝜃𝑖𝑖𝑖𝑖−1
𝜃𝜃𝑖𝑖𝑖𝑖

� 𝑘𝑘� 𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖�𝜃𝜃𝑖𝑖𝑖𝑖 �2𝐾𝐾�𝑖𝑖+1�+1�

�𝑘𝑘𝑖𝑖+𝜃𝜃𝑖𝑖𝑖𝑖𝐾𝐾�−𝑖𝑖 ,𝑖𝑖+1�
2�𝐾𝐾�𝑖𝑖+1�

2   ■ 

Proof of 𝝏𝝏𝒑𝒑𝒋𝒋 𝝏𝝏𝒘𝒘𝒋𝒋 > 𝟎𝟎⁄ : 

The proof is complete once we have shown that the expression within square brackets in 

equation (21) is positive, or equivalently that 

𝑠𝑠𝑖𝑖
2

1−𝑠𝑠𝑖𝑖
 ∑  𝑠𝑠ℎ

2

1−𝑠𝑠ℎ
ℎ∈𝑁𝑁\𝑖𝑖  < 1 ,        (A24) 

where superscripts 𝑑𝑑 have been dropped to reduce clutter. Throughout the proof, we fix 

an arbitrary 𝑠𝑠𝑖𝑖 ∈ (0, 1) and consider possible distributions of share among the remaining 

𝑛𝑛 − 1 firms ℎ ≠ 𝑖𝑖. Consider first the case of equal shares: 𝑠𝑠ℎ = �1 − 𝑠𝑠𝑖𝑖� (𝑛𝑛 − 1), ∀ℎ ≠ 𝑖𝑖⁄ . In 

this case, the left-hand side of inequality (A24) reduces to 
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𝑠𝑠𝑖𝑖
2

1−𝑠𝑠𝑖𝑖
 ∑  𝑠𝑠ℎ

2

1−𝑠𝑠ℎ
ℎ∈𝑁𝑁\𝑖𝑖  =  

𝑠𝑠𝑖𝑖
2

1−𝑠𝑠𝑖𝑖
(𝑛𝑛 − 1)

 �
1−𝑠𝑠𝑖𝑖
𝑛𝑛−1

�
2

1 − 
1−𝑠𝑠𝑖𝑖
𝑛𝑛−1

 =  
𝑠𝑠𝑖𝑖
2 �1−𝑠𝑠𝑖𝑖�

𝑛𝑛−2+𝑠𝑠𝑖𝑖
.    (A25) 

By inspection, the rightmost side of equation (A25) is largest when 𝑛𝑛 is smallest, 𝑛𝑛 = 2. 

In this case, the expression becomes 𝑠𝑠𝑖𝑖�1− 𝑠𝑠𝑖𝑖�, which is less than one, satisfying (A24). 

Now note that any feasible distribution of shares among the 𝑛𝑛 − 1 remaining firms 

ℎ ≠ 𝑖𝑖 can be constructed from the equal-share distribution above via a sequence of share 

shifts from weakly smaller to weakly larger firms. Any such individual share shift 

between two firms increases the sum ∑  𝑠𝑠ℎ2 (1 − 𝑠𝑠ℎ)⁄ℎ∈𝑁𝑁\𝑖𝑖 , given 𝑠𝑠2 (1 − 𝑠𝑠)⁄  convex in 𝑠𝑠: 

𝜕𝜕

𝜕𝜕𝑠𝑠
� 𝑠𝑠2

1−𝑠𝑠
� = 2𝑠𝑠−𝑠𝑠2

(1−𝑠𝑠)2
> 0;    𝜕𝜕

2

𝜕𝜕𝑠𝑠2
� 𝑠𝑠2

1−𝑠𝑠
� = 2

(1−𝑠𝑠)3
> 0 .     (A26)  

The largest that the sum ∑  𝑠𝑠ℎ2 (1 − 𝑠𝑠ℎ)⁄ℎ∈𝑁𝑁\𝑖𝑖  can get, therefore, is in case one of the firms 

has virtually all remaining share 1 − 𝑠𝑠𝑖𝑖 and all other firms ℎ ≠ 𝑖𝑖 have share close to zero. 

But in the limit this approaches the case of 𝑛𝑛 = 2 above, so once again 𝑠𝑠𝑖𝑖�1− 𝑠𝑠𝑖𝑖� < 1 ■ 

Proof that the bid function in equation (32) is distributed 𝑮𝑮�⋅ |𝒌𝒌𝒊𝒊/𝜽𝜽𝒊𝒊𝒋𝒋�: 

Given 𝐹𝐹(𝑐𝑐) = �𝑐𝑐 − 𝑐𝑐�/(𝑐𝑐 − 𝑐𝑐), we have that,  

 𝐺𝐺�𝑐𝑐|𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖� = 1− [1− 𝐹𝐹(𝑐𝑐)]𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖 = 1− �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖

.                                                  (A27) 

The bid function, 𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖� = 𝑐𝑐 − �𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐𝑖𝑖𝑖𝑖
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖

 has an inverse,  

 𝑏𝑏−1(𝑐𝑐) = 𝑐𝑐 − �𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
1/𝜃𝜃𝑖𝑖𝑖𝑖

.                                                                                     (A28) 

The bid function is distributed 

 Pr�𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖; 𝜃𝜃𝑖𝑖𝑖𝑖� < 𝑐𝑐� = Pr�𝑐𝑐𝑖𝑖𝑖𝑖 < 𝑏𝑏−1(𝑐𝑐)�      

= 𝐺𝐺(𝑏𝑏−1(𝑐𝑐)|𝑘𝑘𝑖𝑖) = 1− �1 −𝐹𝐹�𝑏𝑏−1(𝑐𝑐)��𝑘𝑘𝑖𝑖.                           (A29) 

From (A27) and (A29), we have that Pr�𝑏𝑏�𝑐𝑐𝑖𝑖𝑖𝑖;𝜃𝜃𝑖𝑖𝑖𝑖� < 𝑐𝑐� = 𝐺𝐺�𝑐𝑐|𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖� if and only if 

 �1− 𝐹𝐹�𝑏𝑏−1(𝑐𝑐)��𝑘𝑘𝑖𝑖 = [1− 𝐹𝐹(𝑐𝑐)]𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖 ,  
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which is equivalent to 

 𝐹𝐹�𝑏𝑏−1(𝑐𝑐)� = 1 − [1− 𝐹𝐹(𝑐𝑐)]1/𝜃𝜃𝑖𝑖𝑖𝑖 .                                                                                  (A30) 

From (A28), we have that the left-hand side of (A30) is  

 𝐹𝐹�𝑏𝑏−1(𝑐𝑐)� =
�𝜕𝜕−1(𝑐𝑐)−𝑐𝑐�

𝑐𝑐−𝑐𝑐
= 1 − �𝑐𝑐−𝑐𝑐

𝑐𝑐−𝑐𝑐
�
1/𝜃𝜃𝑖𝑖𝑖𝑖

, 

whereas the right-hand side of (A30) is  

 1 − [1 −𝐹𝐹(𝑐𝑐)]
1
𝜃𝜃𝑖𝑖𝑖𝑖 = 1 − �𝑐𝑐−𝑐𝑐

𝑐𝑐−𝑐𝑐
�
1/𝜃𝜃𝑖𝑖𝑖𝑖

. 

Given that the right-hand side of (A30) equals the left-hand side for a bid function 

satisfying (A28), we have shown that the bid function is distributed 𝐺𝐺�𝑐𝑐|𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖�. It bears 

mentioning that (A30) suggests a more general result: for any 𝐹𝐹 that is invertible, a bid 

function satisfying, 𝑏𝑏−1(𝑐𝑐) = 𝐹𝐹−1�1− [1 −𝐹𝐹(𝑐𝑐)]1/𝜃𝜃𝑖𝑖𝑖𝑖 � is distributed 𝐺𝐺�𝑐𝑐|𝑘𝑘𝑖𝑖/𝜃𝜃𝑖𝑖𝑖𝑖�. ∎ 

Derivation of equation (33): 

We derive the expression 𝑊𝑊𝑖𝑖𝑖𝑖, which is the expected input price for an integrated supplier 

𝑖𝑖 when supplying a particular producer 𝑗𝑗. The no-integration analogue, 𝑊𝑊𝑖𝑖 , can be 

recovered through a simple change of variables. We have that,  

 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑏𝑏−𝑖𝑖𝑖𝑖|𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖� = ∫ ∫ 𝑦𝑦 𝑑𝑑𝑑𝑑�𝑦𝑦|𝐾𝐾�−𝑖𝑖𝑖𝑖�

1−𝑑𝑑�𝜕𝜕|𝐾𝐾�−𝑖𝑖𝑖𝑖 �
𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖�

𝑐𝑐̅
𝜕𝜕

𝑐𝑐̅
𝑐𝑐  

Now using integration by parts and the substitution 1 −𝐺𝐺�𝑏𝑏|𝐾𝐾�−𝑖𝑖𝑖𝑖� = �𝑐𝑐−𝜕𝜕
𝑐𝑐−𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

, we have  

𝑊𝑊𝑖𝑖𝑖𝑖 = ��𝑐𝑐̅ − 𝑏𝑏𝐺𝐺�𝑏𝑏|𝐾𝐾�−𝑖𝑖𝑖𝑖� −� 𝐺𝐺�𝑦𝑦|𝐾𝐾�−𝑖𝑖𝑖𝑖�𝑑𝑑𝑦𝑦
𝑐𝑐

𝜕𝜕
�

𝑐𝑐

𝑐𝑐

�
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖𝑖𝑖� 

       = � �𝑐𝑐 − 𝑏𝑏 �1 − �
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

�
𝑐𝑐

𝑐𝑐

− �(𝑐𝑐 − 𝑏𝑏) −
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

�� �
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘� 𝑖𝑖𝑖𝑖� 
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         = � �𝑏𝑏 �
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖

+
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

�
𝑐𝑐

𝑐𝑐

�
𝑐𝑐 − 𝑏𝑏
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖𝑖𝑖� 

         = ��𝑏𝑏 +
𝑐𝑐 − 𝑏𝑏

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�

𝑐𝑐

𝑐𝑐

𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖𝑖𝑖� 

        =��
𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
+ �1 −

1
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

� 𝑏𝑏�
𝑐𝑐

𝑐𝑐

𝑑𝑑𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖𝑖𝑖� 

        =
𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
+ �

𝐾𝐾�−𝑖𝑖𝑖𝑖
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

� �𝑐𝑐 − � 𝐺𝐺�𝑏𝑏|𝑘𝑘�𝑖𝑖𝑖𝑖�
𝑐𝑐

𝑐𝑐
𝑑𝑑𝑏𝑏� 

       =
𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
+ �

𝐾𝐾�−𝑖𝑖𝑖𝑖
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

� �𝑐𝑐 − �𝑐𝑐 − 𝑐𝑐� +
1

𝑘𝑘�𝑖𝑖𝑖𝑖 + 1
� 

      =
𝑐𝑐 +𝐾𝐾�−𝑖𝑖𝑖𝑖𝑐𝑐
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

+
𝐾𝐾�−𝑖𝑖𝑖𝑖

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
1

𝑘𝑘�𝑖𝑖𝑖𝑖 + 1
 

      = 𝑐𝑐 +
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
+

𝐾𝐾�−𝑖𝑖𝑖𝑖
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

1
𝑘𝑘� 𝑖𝑖𝑖𝑖 + 1

 

      = 𝑐𝑐 + 𝑐𝑐−𝑐𝑐

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1
+ 𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖

𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1

1

𝑘𝑘� 𝑖𝑖𝑖𝑖+1
 ,        (A31) 

where the last equality above uses 𝐾𝐾�−𝑖𝑖𝑖𝑖 ≡ 𝐾𝐾�𝑖𝑖 − 𝑘𝑘�𝑖𝑖𝑖𝑖. With no prior integration, 𝐾𝐾�𝑖𝑖 = 𝐾𝐾 and 

𝑘𝑘�𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖, thus providing the first equality in equation (33). The second equality in equation 

(33) uses 𝑘𝑘𝑖𝑖 = �̂�𝑠𝑖𝑖𝑑𝑑 from (31). ∎  

Derivation of equation (34): 

We derive the expression 𝑈𝑈𝑖𝑖𝑖𝑖, which is the expected per-unit margin for an integrated 

supplier 𝑖𝑖, when supplying a particular producer 𝑗𝑗. The no-integration analogue, 𝑈𝑈𝑖𝑖 , can 

be recovered through a simple change of variables. We have that,  

 𝑈𝑈𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑏𝑏−𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖 |𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖� = ∫ ∫ (𝑦𝑦 − 𝑐𝑐) 𝑑𝑑𝑑𝑑�𝑦𝑦|𝐾𝐾�−𝑖𝑖𝑖𝑖 �

1−𝑑𝑑�𝜕𝜕(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖�
𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)

𝑐𝑐̅
𝜕𝜕 (𝑐𝑐)

𝑐𝑐̅
𝑐𝑐 ,  

where 𝑏𝑏(𝑐𝑐) ≡ 𝑏𝑏�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖� as a shorthand. Using integration by parts and the substitution, 

1 −𝐺𝐺�𝑏𝑏(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖� = �𝑐𝑐−𝜕𝜕(𝑐𝑐)
𝑐𝑐−𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

, we have 𝑈𝑈𝑖𝑖𝑖𝑖 = 
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   ���𝑐𝑐 − 𝑏𝑏(𝑐𝑐)𝐺𝐺�𝑏𝑏(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖� −� 𝐺𝐺�𝑦𝑦|𝐾𝐾�−𝑖𝑖𝑖𝑖�
𝑐𝑐 

𝜕𝜕 (𝑐𝑐)
�

𝑐𝑐

𝑐𝑐

− 𝑐𝑐�1 −𝐺𝐺�𝑏𝑏(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖��� �
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) 

 = � ��𝑐𝑐 − 𝑐𝑐 − (𝑏𝑏(𝑐𝑐)− 𝑐𝑐)𝐺𝐺�𝑏𝑏(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖��
𝑐𝑐

𝑐𝑐

− �𝑐𝑐 − 𝑏𝑏(𝑐𝑐)−
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

�� �
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) 

= � �(𝑏𝑏(𝑐𝑐)− 𝑐𝑐)�1− 𝐺𝐺�𝑏𝑏(𝑐𝑐)|𝐾𝐾�−𝑖𝑖𝑖𝑖��
𝑐𝑐

𝑐𝑐

+
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

� �
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) 

= � �(𝑏𝑏(𝑐𝑐)− 𝑐𝑐) �
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑐𝑐

𝑐𝑐

+
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

� �
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

�
−𝐾𝐾�−𝑖𝑖𝑖𝑖

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) 

= ��(𝑏𝑏(𝑐𝑐)− 𝑐𝑐) +
𝑐𝑐 − 𝑐𝑐

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
�
𝑐𝑐 − 𝑏𝑏(𝑐𝑐)
𝑐𝑐 − 𝑐𝑐

��
𝑐𝑐

𝑐𝑐

𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) 

= � ��(𝑐𝑐 − 𝑐𝑐)− �𝑐𝑐 − 𝑐𝑐� �
𝑐𝑐 − 𝑐𝑐
𝑐𝑐 − 𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖
� +

𝑐𝑐 − 𝑐𝑐
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

�
𝑐𝑐 − 𝑐𝑐
𝑐𝑐 − 𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖
� �

𝑘𝑘𝑖𝑖
𝑐𝑐 − 𝑐𝑐

� �
𝑐𝑐 − 𝑐𝑐
𝑐𝑐 − 𝑐𝑐

�
𝑘𝑘𝑖𝑖−1

𝑑𝑑𝑐𝑐
𝑐𝑐

𝑐𝑐

, 

where the above expression makes the substitutions  

𝑏𝑏(𝑐𝑐)− 𝑐𝑐 = (𝑐𝑐 − 𝑐𝑐) − �𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖

,  

𝑐𝑐 − 𝑏𝑏(𝑐𝑐) = �𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖

, and  
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𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) = � 𝑘𝑘𝑖𝑖
𝑐𝑐−𝑐𝑐

� �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝑘𝑘𝑖𝑖−1

𝑑𝑑𝑐𝑐.  

We then have 

 𝑈𝑈𝑖𝑖𝑖𝑖 = � 𝑘𝑘𝑖𝑖
𝑐𝑐−𝑐𝑐

� ∫ �(𝑐𝑐 − 𝑐𝑐) �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝑘𝑘𝑖𝑖−1

− � 𝐾𝐾�−𝑖𝑖𝑖𝑖
𝐾𝐾�−𝑖𝑖𝑖𝑖+1

��𝑐𝑐 − 𝑐𝑐� �𝑐𝑐−𝑐𝑐
𝑐𝑐−𝑐𝑐

�
𝜃𝜃𝑖𝑖𝑖𝑖+𝑘𝑘𝑖𝑖−1

� 𝑑𝑑𝑐𝑐𝑐𝑐
𝑐𝑐   

       = �
𝑘𝑘𝑖𝑖

𝑐𝑐 − 𝑐𝑐
� ��

(𝑐𝑐 − 𝑐𝑐)2

𝑘𝑘𝑖𝑖
−
𝑐𝑐 − 𝑐𝑐
𝑘𝑘𝑖𝑖

� �
𝑐𝑐 − 𝑐𝑐
𝑐𝑐 − 𝑐𝑐

�
𝑘𝑘𝑖𝑖
𝑑𝑑𝑐𝑐

𝑐𝑐

𝑐𝑐
� − �

𝐾𝐾�−𝑖𝑖𝑖𝑖
𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1

� �
(𝑐𝑐 − 𝑐𝑐)2

𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖
�� 

      = �
𝑘𝑘𝑖𝑖

𝑐𝑐 − 𝑐𝑐
� ��

(𝑐𝑐 − 𝑐𝑐)2

𝑘𝑘𝑖𝑖
−

(𝑐𝑐 − 𝑐𝑐)2

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 + 1)� − �
𝐾𝐾�−𝑖𝑖𝑖𝑖

𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1
� �

(𝑐𝑐 − 𝑐𝑐)2

𝜃𝜃𝑖𝑖𝑖𝑖 + 𝑘𝑘𝑖𝑖
�� 

      = �𝑐𝑐 − 𝑐𝑐�𝑘𝑘𝑖𝑖 �
1

𝑘𝑘𝑖𝑖 + 1
−

𝐾𝐾�−𝑖𝑖𝑖𝑖
�𝐾𝐾�−𝑖𝑖𝑖𝑖 + 1��𝑘𝑘𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖�

� 

      = �𝑐𝑐 − 𝑐𝑐�𝑘𝑘𝑖𝑖 �
1

𝑘𝑘𝑖𝑖+1
− 𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖

�𝐾𝐾�𝑖𝑖−𝑘𝑘� 𝑖𝑖𝑖𝑖+1�𝜃𝜃𝑖𝑖𝑖𝑖 �𝑘𝑘� 𝑖𝑖𝑖𝑖+1�
� ,                                                                  (A32) 

where the last equality uses 𝐾𝐾�−𝑖𝑖𝑖𝑖 = 𝐾𝐾�𝑖𝑖 − 𝑘𝑘� 𝑖𝑖𝑖𝑖 and 𝑘𝑘𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑖𝑖𝑖𝑖�𝑘𝑘�𝑖𝑖𝑖𝑖 + 1�. With no prior 

integration, 𝐾𝐾�𝑖𝑖 = 𝐾𝐾 and 𝑘𝑘�𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖, thus providing the first equality in equation (34). The 

second equality in equation (34) uses 𝑘𝑘𝑖𝑖 = �̂�𝑠𝑖𝑖𝑑𝑑 from (31). ∎  

Derivation of equation (36) and proof of first-order impact of RRC: 

As before, let 𝑏𝑏−𝑖𝑖𝑖𝑖 = min
ℎ≠𝑖𝑖

�𝑏𝑏ℎ𝑖𝑖�. By construction, 𝜇𝜇𝑖𝑖𝑖𝑖𝑢𝑢 = �𝑏𝑏−𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�𝕀𝕀�𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖�, where 

𝕀𝕀�𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖� is an indicator equal to one if 𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖  and zero otherwise. Also by 

construction, 𝜇𝜇𝑖𝑖𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖𝑑𝑑 is nonzero only when 𝑏𝑏−𝑖𝑖𝑖𝑖 > 𝑏𝑏𝑖𝑖𝑖𝑖, in which case, 𝑤𝑤𝑖𝑖 = 𝑏𝑏−𝑖𝑖𝑖𝑖. Let 𝐺𝐺𝒘𝒘−𝒋𝒋 

denote the joint distribution of {𝑤𝑤𝑙𝑙}𝑙𝑙≠𝑖𝑖. We have that  

  E�𝜇𝜇𝑖𝑖𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖𝑑𝑑 � = ∫∫ ∫ (𝛽𝛽 − 𝑐𝑐) ⋅ 𝜎𝜎𝑖𝑖(𝑤𝑤1, … ,𝛽𝛽 , … ,𝑤𝑤𝑛𝑛)𝑑𝑑𝐺𝐺�𝛽𝛽|𝐾𝐾�𝑖𝑖�𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)𝑑𝑑𝐺𝐺𝒘𝒘−𝒋𝒋

1
𝜕𝜕�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖 �

1
0    (A32) 

where 𝑑𝑑𝐺𝐺�𝛽𝛽|𝐾𝐾�𝑖𝑖� is the density of 𝑏𝑏−𝑖𝑖𝑖𝑖 and 𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖) is the density of 𝑐𝑐𝑖𝑖𝑖𝑖. From (A32), we 

see that 𝜃𝜃𝑖𝑖𝑖𝑖  only impacts 𝑖𝑖’s upstream profit to the extent that it impacts the probability 

that 𝑖𝑖 wins the auctions for producer 𝑗𝑗 and hence the probability that 𝑏𝑏−𝑖𝑖𝑖𝑖 is pivotal in 

determining 𝑤𝑤𝑖𝑖. Because each auction is independent and since 𝜃𝜃𝑖𝑖ℎ  is chosen uniquely for 

each producer ℎ, 𝜃𝜃𝑖𝑖𝑖𝑖  has no impact on any other producers’ input prices.  
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Differentiating (A32) with respect to 𝜃𝜃𝑖𝑖𝑖𝑖 , we have 

𝑑𝑑E�𝜇𝜇𝑖𝑖𝑖𝑖 ⋅ 𝑠𝑠𝑖𝑖𝑑𝑑 �
𝑑𝑑𝜃𝜃𝑖𝑖𝑖𝑖

= −
𝜕𝜕𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�
𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖  

× 

�∫ ∫ �𝑏𝑏�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖� − 𝑐𝑐�𝜎𝜎�𝑤𝑤1, … , 𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�, … ,𝑤𝑤𝑚𝑚�𝑔𝑔�𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝐾𝐾�𝑖𝑖�𝑑𝑑𝐺𝐺(𝑐𝑐|𝑘𝑘𝑖𝑖)𝑑𝑑𝐺𝐺𝒘𝒘−𝒋𝒋
1
0 �,    (A33)                        

where  

𝑔𝑔�𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖�|𝐾𝐾�𝑖𝑖� ≡
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐺𝐺�𝛽𝛽|𝐾𝐾�𝑖𝑖��

𝑑𝑑=𝜕𝜕�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖 �
= 𝐾𝐾�𝑖𝑖�1 − 𝑏𝑏�𝑐𝑐: 𝜃𝜃𝑖𝑖𝑖𝑖��

𝐾𝐾�𝑖𝑖−1                                   (A34) 

is the instantaneous rate of change in the distribution of 𝑏𝑏−𝑖𝑖𝑖𝑖 in the neighborhood of 𝑏𝑏−𝑖𝑖𝑖𝑖 =

𝑏𝑏�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖�. Finally, given that 𝜕𝜕𝜕𝜕
�𝑐𝑐;𝜃𝜃𝑖𝑖𝑖𝑖�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖  
> 0 and 𝑏𝑏�𝑐𝑐; 𝜃𝜃𝑖𝑖𝑖𝑖� ≥ 𝑐𝑐 for all 𝜃𝜃𝑖𝑖𝑖𝑖 ≥ 1, it follows that 

𝜕𝜕E�𝜇𝜇𝑖𝑖𝑖𝑖⋅𝑠𝑠𝑖𝑖
𝑑𝑑�

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
≤ 0, strictly so for 𝜃𝜃𝑖𝑖𝑖𝑖 > 1.  Further, given 𝑏𝑏(𝑐𝑐; 1) = 𝑐𝑐 expression (A33) is zero 

evaluated at 𝜃𝜃𝑖𝑖𝑖𝑖 = 1. ∎ 

 

  

 

 

 


