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Bundling with Resale

Drew Vollmer∗

U.S. Department of Justice

Abstract

How does resale affect multiproduct bundling? I investigate using a model of monopoly

bundling with costly resale. Consumers purchase in the primary market while anticipating resale,

then participate in a resale market with market-clearing prices. Resale forces the monopolist

to balance the additional profit from a discounted bundle against the opportunity for consumer

arbitrage. In equilibrium, the monopolist may still offer a discounted bundle, but resale reduces

the returns to bundling and has an ambiguous effect on consumer and total welfare. When

consumers have heterogeneous costs of resale, it is possible for consumers to resell in equilibrium.

1 Introduction

Although economists have devoted significant attention to multiproduct bundling, the literature has

not considered a critical feature of many bundles: that they can be split apart and resold. Consider

season tickets for sports and theater, which consumers separate into tickets they use and tickets

they resell on StubHub. Or think of books sold in box sets, which consumers can list on eBay and

Amazon. Other examples include cookware sets, golf club sets, and trading cards. More generally,

bundles can be split and resold whenever their component goods are not physically attached.1

Studying resale matters because resale affects the incentives to bundle. Discounted bundles

encourage consumers to buy more goods, but resale undermines the strategy by allowing them to

purchase the bundle, resell some goods, and keep the discount. The effects of resale on the buyer’s

∗e-mail: drew.vollmer@gmail.com. The views expressed in this paper are those of the author and do not reflect
those of the U.S. Department of Justice. I appreciate help and insights from Curtis Taylor, James Roberts, Allan
Collard-Wexler, Bryan Bollinger, Jonathan Williams, Daniel Xu, Huseyin Yildirim, and seminar participants in the
theory and industrial organization groups at Duke University.

1Some bundles, such as cable TV packages, cannot be separated for resale. Others can be separated but may be
impractical to resell, like fast food combo meals.
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purchase decisions and the seller’s incentives to discount the bundle have not yet been explored.

Consequently, our understanding of markets that combine bundling and resale is incomplete.

The purpose of this paper is to examine the effects of resale on bundling. I study a model

of monopoly bundling with costly resale to determine the effects of resale on profit, welfare, and

the monopolist’s problem. Resale introduces a new tradeoff to the monopolist’s problem, reduces

profit, and has an ambiguous effect on consumer and total welfare.

Resale complicates the monopolist’s problem by creating a tradeoff between the profitability of

bundling and consumers’ gains from resale. The essence of bundling is that larger bundle discounts

raise profit, but the gains are tempered when large discounts encourage consumers to buy the

bundle and break it apart to resell. Resale is harmful for the monopolist because it only receives

the discounted bundle price instead of the higher prices for the constituent goods.

I find that resale limits, but does not eliminate, the returns to bundling in equilibrium. The

monopolist would earn more without resale, but it still discounts the bundle because resale is costly

for consumers. More surprisingly, the ability to resell may actually harm consumers and society.

For a fixed allocation, resale should boost welfare. However, the monopolist responds to resale

by changing its prices and hence the initial allocation of goods, making the effects of resale on

consumer and total welfare ambiguous.

The analysis contributes to our understanding of both multiproduct bundling and resale. Al-

though a small literature considers resale when a monopolist sells many units of one good (e.g.

Alger (1999)), no prior study has considered how resale affects multiproduct bundling. The combi-

nation of bundling and resale matters because resale affects welfare and the returns to bundling—a

traditional focus of the bundling literature. Moreover, bundling and resale coexist in economically

significant markets: revenue from sports tickets, sold in mixed bundles, exceeded $10bn in 2019

(Statista (2020)) and revenue from just one trading card game is estimated to exceed $500m per

year (Deaux (2019)). The welfare results also have implications for resale policy. U.S. law guaran-

tees a right to resell most goods2 and some US states have expanded resale rights further (Pender

(2017)). I show that consumers and society do not necessarily benefit from resale when the seller

bundles.

The basis for the analysis is a model in which a monopolist seller practices mixed bundling

and atomistic consumers have access to a resale market with transaction costs. The monopolist

starts by setting primary market prices for two goods and a bundle containing both goods. After

2The first-sale doctrine prevents copyright holders from restricting the buyer’s ability to resell in 17 U.S.C. §109.
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observing prices, consumers purchase goods in the primary market while anticipating the ability

to engage in costly resale. Finally, consumers participate in a resale market where resale prices are

determined by market clearing.

Consumers resell in equilibrium when the cost of purchasing the bundle and participating in the

resale market is lower than the total cost of buying each component good in the primary market.

In Section 3, I study the case where consumers have a homogeneous cost of resale and show there is

a threshold level of the bundle discount where consumers become willing to resell. In equilibrium,

resale causes the monopolist to shrink its discount until no consumer is willing to resell. The result

is a simple characterization of the monopolist’s problem: it maximizes profit without resale subject

to a constraint on the bundle discount. The model is also tractable enough to clarify the forces

affecting welfare. I show that when the cost of resale changes, the change in consumer welfare

depends entirely on inframarginal consumers, but for total welfare it depends entirely on marginal

consumers.

The results with a single cost of resale are appealingly simple, but do not match the motivating

examples that involve both bundle discounts and observed resale. In Section 4, I study consumers

with heterogeneous costs of resale and show that the equilibrium can feature both bundle discounts

and resale transactions. Unlike the case with homogeneous costs, heterogeneous costs of resale

allow the number of willing resellers to rise gradually with the bundle discount. The result is

a more complex pricing problem: the monopolist must choose a discount balancing the number

of consumers who resell with the profit earned from consumers who do not. In equilibrium, the

monopolist might tolerate resale among low-cost types if a large discount earns more profit from

high-cost types.

A contribution of the model is its use of an endogenous resale market where resale prices are

determined by market clearing. The approach is novel because earlier studies of price discrimina-

tion with arbitrage rely on simplifying assumptions to limit aftermarket outcomes. An example

is Alger (1999), who assumes that consumers evenly share multi-unit packages at no cost—for in-

stance, paying half of the price for half of the quantity. As a result, aftermarket prices are directly

determined by the monopolist’s menu. In contrast, resale prices in this paper are an equilibrium

outcome determined by competitive forces and reservation values in the resale market. In addition

to providing a richer equilibrium, the assumption of market power in the primary market and mar-

ket clearing in the resale market is more realistic: in observed markets, sellers control the prices of

differentiated products and small resellers interact in online resale markets.
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The paper proceeds as follows. I start by reviewing the relevant literature. In Section 2, I

introduce the model, and in Section 3 I study a benchmark case with homogeneous costs of resale.

I consider heterogeneous costs in Section 4. In Section 5, I conclude.

Related Literature. A primary focus of the bundling literature to date is to determine when

monopoly bundling is profitable. Studies have considered how the value of bundling depends on

the distribution of consumer values, as in McAfee et al. (1989) and Chen and Riordan (2013), the

number of goods sold, as in Bakos and Brynjolfsson (1999), and uncertainty over future states of

the world, as in Alexandrov and Bedre-Defolie (2014). This paper contributes by demonstrating

that resale is a determinant of the profitability of bundling.

Researchers have also considered bundling outside the traditional setting with a monopolist

seller. Chen and Li (2018) consider the effect of bundling when a buyer must procure several

products. Zhou (2017) and Zhou (2021) study the effects of bundling in a competitive environment.

Pagnozzi (2009) considers bundling in auctions when consumers can resell after the auction, but

the implications of resale in his study are specific to auctions rather than monopoly bundling.

Bundling has also been studied empirically. Gandal et al. (2018) use data on computer software

to determine the effect of correlations in consumer values on the profitability of bundling. Chu

et al. (2011) use data on theater ticket sales to compare the performance of theoretically optimal

bundle pricing to simpler rules. Crawford and Yurukoglu (2012) study bundling in a competitive

setting, cable television, and consider its effect on upstream bargaining.

A separate literature considers the effects of resale markets. The effect of resale on sellers of

durable goods has been widely studied, for instance in Chen et al. (2013). Sellers of durable goods

can benefit from resale because it allocates past vintages to the consumers who value them most,

but resale forces sellers to compete against past vintages. This paper features a similar tradeoff,

with resale increasing consumers’ willingness to pay for the bundle but introducing competition for

individual goods. I find that the harms of resale always outweigh the benefits to the seller. Sellers

of perishable goods can also benefit from reallocation when there is limited capacity and consumers

receive preference shocks, as in Cui et al. (2014).

Chen et al. (2021) consider how to price loot boxes, random prizes that can be thought of as

bundles of award probabilities. Their analysis of salvage—letting consumers return an unwanted

item for a partial refund—is similar to allowing resale, but it differs in that returned goods do not

compete with the seller’s offerings.
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Finally, this paper is related to the literature on price discrimination with resale, which focuses

on multi-unit sales of one product. The most notable paper in this literature is Alger (1999), who

considers pricing when consumers can make costless joint purchases. In the equilibrium of that

analysis, the seller sets prices that prevent all resale. Several other papers, such as Gans and King

(2007) and McManus (2001), consider settings where the seller benefits from or practices price

discrimination when consumers can resell.

2 Model

A monopolist with zero fixed and marginal costs and no capacity constraints sells two goods, called

1 and 2. The monopolist sets primary market prices P = (P1, P2, PB), where P1 and P2 are the

prices of goods 1 and 2 and PB is the price of a bundle containing both goods. The bundle price

satisfies PB ≤ P1 + P2 because consumers can buy each good separately.

The market includes a mass of consumers normalized to one. Each consumer has type (v1, v2),

where v1 and v2 denote the consumer’s value for each good and v1 + v2 is the consumer’s value for

the bundle. Values are drawn from the joint distribution F (v1, v2). I assume that F (v1, v2) has

support on [0, 1]2 with a strictly positive, atomless density.

The game proceeds as follows. First, the monopolist sets primary market prices P . Next,

consumers purchase goods in the primary market. Finally, consumers participate in a resale market

with a vector of endogenously determined clearing prices P s = (P s
1 , P

s
2 ). The bundle is not offered

in the resale market because it does not affect market outcomes.3 Consumers and the monopolist

know the distribution of values F (v1, v2) throughout the game.

Participating in the resale market, either as a buyer or reseller, is costly. Consumer k must pay

a cost ck for each good resold or bought from a reseller. For example, when a single good is resold

the buyer and reseller each pay the cost, and if a consumer resells both goods he incurs the cost

2ck. Costs are independent of values, ck ⊥ (v1, v2), and follow the distribution G(c), which has

density g(c) and satisfies G(
¯
c) = 0 and G(c̄) = 1 for some real numbers 0 ≤

¯
c < c̄. The distribution

of costs of resale is also common knowledge. The cost of resale can be interpreted as the time and

effort needed to participate.4

3Buyers would not pay more than PB and resellers could not acquire the bundle for less than PB . The bundle could
be resold at P s

B = PB if resale were frictionless, but profit and surplus would be the same if consumers purchased in
the primary market.

4An alternative assumption would be that part of the cost is paid to the resale market operator, like the fees on
sites like eBay and StubHub. Under this assumption, the cost would count towards total surplus. This would have
no effect on the results in Section 3, but it would increase total welfare in Section 4.
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I consider subgame perfect Nash equilibria of the model, which require consumers to have

correct expectations for resale prices P s when they make purchase decisions in the primary market.

Equilibrium is a pair (P ∗, P s∗) of the monopolist’s primary market prices P and resale market prices

P s such that (i) primary market prices P ∗ maximize profit given consumer demand, (ii) consumers

make optimal primary market purchases under the expectation that the resale market will clear at

prices P s∗, and (iii) the prices P s∗ clear the resale market when consumers make optimal primary

market purchases anticipating P s∗.

Consumers choose whether to act as buyers or resellers in the resale market. For instance,

suppose consumer k wants to acquire good 1. She can earn surplus v1 − (P s
1 + ck) by buying it in

the resale market, but she can also earn v1 − (PB − P s
2 + ck) by purchasing the bundle, reselling

good 2, and keeping good 1. Each consumer chooses the option maximizing surplus.

Surplus-maximizing choices define a map from types (v1, v2) to purchase decisions for each

cost ck. Figure 1 depicts the purchase regions for the case without resale. The diagonal line,

v1 + v2 = PB, separates consumers with positive and negative surplus from the bundle. The

horizontal and vertical lines v1 = P1 and v2 = P2 do the same for the individual goods. Some

consumers have positive surplus for several choices, so the regions denote the surplus-maximizing

option.

v1

v2

P1

P2

NP

B

2

1

Figure 1: Allocations when there is no resale. Consumers in the B regions purchase the bundle,
those in the 1 and 2 regions purchase only good 1 or good 2, and those in the NP region make no
purchase.
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3 A Homogeneous Cost of Resale

I begin the analysis by considering the case where all consumers share the same cost of participating

in the resale market, ck = c for all consumers k.

3.1 Resale Equilibrium

Suppose that the monopolist has announced its price vector P and consider the subgame in which

consumers make primary and then resale market purchase decisions. An equilibrium of the subgame

is a vector of secondary market prices P s∗(P ) such that consumers make their optimal purchase

decisions in the primary market believing that resale prices will be P s∗(P ) and the vector of resale

prices P s∗(P ) clears the resale market after optimal purchases in the primary market. The goal of

this subsection is to characterize equilibrium resale prices and the conditions necessary for resale

in equilibrium.

The characterization of equilibrium relies on two supporting results. The first establishes a

condition for resale prices.

Lemma 1. In any equilibrium with resale market transactions, P s∗
1 + P s∗

2 = PB.

Lemma 1 follows from the need for a buyer and seller in each resale transaction. If the sum

of resale prices were any higher, there would be no resale buyers, and if it were any lower, there

will be no resellers. I focus on equilibria in which P s∗
1 + P s∗

2 = PB because the class includes all

equilibria with resale.

The result is useful because it narrows the search for equilibrium resale prices and clarifies that

resale supply comes from consumers who purchase the bundle to resell one good and keep the other.

No consumer purchases an individual good for resale or tries to resell both goods in the bundle

when c > 0 because it results in a loss in equilibrium. Consumers may be willing to do so when

resale is frictionless, but doing so does not affect market outcomes in the equilibrium of the full

model.

An additional implication is that there is no meaningful distinction between consumers who

purchase good 1 in the resale market and consumers who buy the bundle to resell good 2: both

hold good 1 at the end of the market and earn the same surplus.5 Consequently, I refer to consumers

as wanting to buy good 1 or 2 through resale and do not specify whether they buy or resell in the

resale market.
5Observe that v1 − (P s

1 + c) = v1 − (PB − P s
2 + c).
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The second supporting result establishes that, when the monopolist only sells a bundle, there is

a unique vector of equilibrium resale prices when the cost of resale is small enough. The requirement

for the cost of resale is given in Assumption 1.

Assumption 1. The cost c satisfies c < PB
2 when PB < 1 and c < 2−PB

2 otherwise.

The assumption rules out cases where consumers do not resell because the costs are high relative

to the price of the good, either because the price is too low to justify resale (PB < 1) or because

the price is so high that it is close to the maximum possible valuation (PB ≥ 1). If values for each

good were unbounded, the case where PB ≥ 1 would be unnecessary. I assume that Assumption 1

is satisfied for the rest of the analysis.

Lemma 2. When the monopolist only sells the bundle (P1 = P2 > 1), there exists an equilibrium

vector of resale market prices P̂ s∗. Under Assumption 1, the vector of resale prices is unique.

The prices P̂ s∗ are called the pure-bundling resale prices and would prevail in the resale market

if no consumer bought an individual good in the primary market. They are useful in finding resale

prices in the mixed bundling equilibrium.

To see why an equilibrium exists, consider the case of pure bundling with resale depicted

in Figure 2. Consumers know that the bundle price is PB, which defines the diagonal line as

v1 + v2 = PB, and believe that resale prices will be P s. Types in region B find it optimal to buy

the bundle; those in regions 1 and 2 find it optimal to acquire one good through resale. The key

difference from the case with no resale is that the individual good prices (P1, P2) have been replaced

with cost-inclusive resale prices (P s
1 + c, P s

2 + c). The dashed lines from the (cost-exclusive) resale

prices meet at the diagonal by Lemma 1.

The primary market runs before the resale market. Consumers in the B region purchase the

bundle and keep it. Half of consumers who want only one good purchase the bundle in order to

resell.6 Finally, consumers participate in the resale market. Consumers who bought the bundle but

only want one good resell to consumers who only want one good and did not buy the bundle. The

resale market only clears at the expected prices P s if the mass of consumers in regions 1 and 2 are

equal.

Equilibrium therefore requires a vector of resale prices equating the mass of the two regions.

Such a price vector exists under mild conditions. By Lemma 1, any increase in P s
1 must cause P s

2 to

fall (and vice versa). The increase in P s
1 causes fewer consumers to want good 1 and more to want

6Each consumer could flip a coin, for example.
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v1

v2

P s
1 P s

1 + c

P s
2

P s
2 + c

NP

B

2

1

Figure 2: Pure bundling allocations when the resale price is P s.

good 2. In Figure 2, the intersection of the dashed lines from P s
1 and P s

2 slides southeast along

the diagonal, shrinking the 1 region and enlarging the 2 region. With a strictly positive, atomless

density, there is a vector of resale prices making the mass of consumers in the two regions equal.

The resale price vector is unique if there are prices such that consumers want to purchase both

goods in the resale market. Graphically, the regions 1 and 2 cannot be empty at the same time.

Assumption 1 guarantees that resale prices are unique by ruling out cases where both regions are

empty because resale is prohibitively expensive.

Lemmas 1 and 2 provide the tools needed to characterize the full resale equilibrium. I add one

additional assumption to simplify the conclusion: when all consumers are indifferent between the

primary and resale markets, they choose to purchase in the primary market.

Assumption 2. When P1 = P s∗
1 + c and P2 = P s∗

2 + c, no consumers participate in resale.

Theorem 1. Let P = (P1, P2, PB) be a vector of primary market prices. There is resale in

equilibrium if and only if P1+P2 > PB+2c. Resale prices are unique if there are resale transactions.

Theorem 1 shows that the existence of resale in equilibrium reduces to a simple condition:

whether P1 + P2 > PB + 2c. The condition has a natural interpretation. Resale involves sharing

the bundle at price PB, but incurs the extra cost 2c. Consumers only share the bundle through

resale when it is strictly cheaper than buying each individual good from the seller.

The result also connects resale to the monopolist’s ability to discriminate. Bundling is profitable

because it lets the monopolist discount the bundle relative to buying each good individually, PB <

9



P1 + P2. Doing so lets it boost sales among consumers with high average valuations, like those in

the triangle bounded by v1 + v2 = PB, v1 < P1, and v2 < P2. But discounting the bundle lets

consumers share the discount through the resale market, leading to resale whenever the discount

exceeds 2c.

Assumption 2 plays a limited role in the proof of Theorem 1. It allows resale to imply that

PB +2c < P1 +P2 by ruling out equilibria of the subgame where consumers resell even though they

earn the same surplus in the primary market. The assumption has no substantive consequences for

the rest of the analysis. The subgame equilibria it excludes cannot occur in the equilibrium of the

full model when c > 0 and have no effect on outcomes when c = 0.7

3.2 The Monopolist’s Problem

The monopolist’s problem is to set its profit-maximizing price vector P ∗ given the resale equilibrium

described in Theorem 1. The key insight is that it is never profitable for the monopolist to allow

resale. To see why, suppose that some consumers resell at prices P s∗. Consumers would make

the same choices if primary market prices were (P s∗
1 + c, P s∗

2 + c, PB), but they would purchase in

the primary market, letting the monopolist earn an additional 2c on each transaction that used to

involve resale.

The conclusion that it is never optimal to allow resale, coupled with the conditions for resale

in Theorem 1, allow a complete description of the monopolist’s problem.

Theorem 2. Let πN (P1, P2, PB) be the monopolist’s profit when there is no resale. There are no

resale transactions in equilibrium. The monopolist’s problem is

max
P

πN (P1, P2, PB) subject to P1 + P2 ≤ PB + 2c. (1)

Theorem 2 establishes that the effect of resale is to limit the seller’s bundle discount, and

hence its ability to use price discrimination. Without resale, the monopolist is free to choose any

bundle discount it likes, but with resale, it is limited to discounts smaller than 2c. When resale is

frictionless, the monopolist offers no discount at all.

The implication that resale is harmful for sellers rings true because sellers of bundles have

attempted to prevent resale. The NFL set a price floor in the resale market before the New York

Attorney General’s office intervened (Belson (2016)). The Denver Broncos NFL team went so far as

7For an explanation of why the subgame equilibrium cannot occur in the full game, see the proof of Theorem 2.
The proof does not invoke the assumption for the case where c > 0.
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to revoke season tickets for consumers who resell too frequently (Thomas (2017)). Preventing the

resale of durable goods is more difficult because consumers have a legal right to resell, but sellers

can make resale more difficult, for example by printing several books in a single volume.

The condition for resale in equilibrium and the constraint on prices in the monopolist’s problem

are appealingly simple and demonstrate the effect of resale, but they rely on the assumption that

all consumers have the same cost of resale c. With a homogeneous cost, the monopolist can prevent

all resale by setting a discount less than 2c. But the instant the discount exceeds 2c, consumers

flock to the resale market. Later, I show that consumers can resell in equilibrium when there are

heterogeneous costs of resale. The prediction that there is no resale in equilibrium is shared in

other studies of price discrimination with arbitrage, such as Alger (1999).

3.3 Comparative Statics

To fully describe the effects of resale on bundling, I present comparative statics for profit, the

bundle discount, and welfare as the cost of resale changes.

Corollary 1. The monopolist’s profit and bundle discount are weakly increasing in the cost of

resale c.

The conclusion of Corollary 1 follows from the monopolist’s constraint in Theorem 2. It confirms

that resale is harmful to monopoly bundling and that the ease of resale matters for the returns

to bundling. It also establishes that, when resale becomes more costly, the monopolist weakly

increases the bundle discount.

The changes in consumer and total welfare are less clear-cut. When the initial allocation of

goods is fixed, consumers benefit from resale by engaging in welfare-enhancing trade. But consumers

may not benefit because the monopolist revises its prices in response to resale, changing the initial

allocation. As for price discrimination more generally, the effect of resale on consumer welfare is

ambiguous.

To make the analysis tractable, I impose the following assumption.

Assumption 3. When there is a homogeneous cost of resale c, the monopolist’s optimal prices

P ∗(c) are differentiable in c and satisfy P ∗
′

B (c) ≤ 0, P ∗
′

1 (c) ≥ 0, and P ∗
′

2 (c) ≥ 0.

The assumption requires the distribution of values F (v1, v2) to be sufficiently regular that prices

are continuous in c. The requirement for the derivatives matches the idea that the monopolist

11



weakly increases its bundle discount as c increases, lowering the price of the bundle and raising the

prices of the individual goods. Assumption 3 holds when F (v1, v2) is uniform.

Under Assumption 3, an increase in c affects consumer welfare by increasing surplus for con-

sumers buying the bundle and lowering it for those who buy the individual goods. Because marginal

buyers have surplus zero, the change in consumer welfare depends only on inframarginal consumers.

Theorem 3. Let µ1(c), µ2(c), and µB(c) denote the masses of consumers buying good 1, good 2,

and the bundle when the cost of resale is c. Consumer welfare weakly increases in c if and only if

∂P ∗1 (c)

∂c
µ1(c) +

∂P ∗2 (c)

∂c
µ2(c) ≤ −

∂P ∗B(c)

∂c
µB(c). (2)

The direction of the change in consumer welfare in Theorem 3 is necessarily ambiguous: bundling

has an ambiguous effect, and the integral of the change in consumer welfare over c must equal the

difference between component pricing and mixed bundling.

The change does not have to be monotone in the cost of resale. The sign of the change depends

on how many consumers buy the bundle relative to the number buying the individual goods, and

the share in each group varies with the cost of resale. The example in Section 3.4 illustrates the

non-monotonicity.

Unlike the change in consumer welfare, the change in total welfare only depends on marginal

consumers. Inframarginal consumers make the same purchases when the cost changes and thus do

not contribute to the welfare change.

Theorem 4. Total welfare weakly increases in c if and only if

0 ≤ − ∂P ∗
1 (c)

∂c

∫ P∗
B(c)−P∗

1 (c)

0

P ∗
1 (c)f(P ∗

1 (c), v2) dv2−

∂P ∗
2 (c)

∂c

∫ P∗
B(c)−P∗

2 (c)

0

P ∗
2 (c)f(v1, P

∗
2 (c)) dv1−(

∂P ∗
B(c)

∂c
− ∂P ∗

1 (c)

∂c

)∫ 1

P∗
1 (c)

(P ∗
B(c)− P ∗

1 (c)) f(v1, P
∗
B(c)− P ∗

1 (c)) dv1−(
∂P ∗

B(c)

∂c
− ∂P ∗

2 (c)

∂c

)∫ 1

P∗
2 (c)

(P ∗
B(c)− P ∗

2 (c)) f(P ∗
B(c)− P ∗

2 (c), v2) dv2−

∂P ∗
B(c)

∂c

∫ P∗
1 (c)

P∗
B(c)−P∗

2 (c)

P ∗
B(c)f(v1, P

∗
B(c)− v1) dv1.

(3)

Each term in Theorem 4 captures the effect of changing c for a line segment of marginal buyers

separating the purchase regions in Figure 1. The first two terms describe the change due to

consumers who switch to buying nothing when the prices of individual goods rise. The next two

12



are the changes from consumers who switch from buying one good to the bundle. The last term

comes from consumers who switch from buying nothing to buying the bundle.

As with consumer welfare, the change in total welfare when the cost c changes is ambigu-

ous because the total effect of bundling on total welfare—an integral over all values of c—is also

ambiguous.

3.4 An Example

I conclude the discussion of homogeneous costs with an example in which values are distributed

uniformly on the unit square, f(v1, v2) = 1. If there were no resale, the optimal prices would be

P ∗ = (2
3 ,

2
3 ,

4−
√

2
3 ), constraining the monopolist whenever c <

√
2

6 .8

Results are shown in Figure 3. Profit is increasing in the cost c, in line with Theorem 1. Further,

the bundle price is decreasing in c and the prices of the individual goods are increasing in c, as

assumed in the welfare discussion in the last subsection.

Total welfare is monotone in the cost of resale in this example, but the change in consumer

welfare is not. It is decreasing at low values of c and reaches its minimum around c = .08.

As c increases, consumer welfare starts to increase and reaches its highest level at c =
√

2
6 —the

equilibrium without resale.

The non-monotonicity is consistent with Theorem 3. The change in consumer welfare is driven

by inframarginal consumers, with an increase in c benefiting consumers who buy the bundle and

harming consumers who buy individual goods. As c varies, the bundle price falls and the prices of

the individual goods rise. At low values of c, the number of consumers buying individual goods is

high relative to the number buying the bundle, so the left side of equation (2) is large and consumer

welfare falls. But as c increases and more consumers purchase the bundle, the change in consumer

welfare turns positive. The change in the set of consumers purchasing each good as c increases is

illustrated for c = .05 and c = .2 in Figure 4.

4 Heterogeneous Costs of Resale

In this section, I show that the monopolist may allow resale in equilibrium when consumers have

heterogeneous costs of resale. Resale still reduces profit and has an ambiguous effect on total

and consumer welfare, but the monopolist may optimally reduce its bundle discount when the

8See the Journal’s editorial web site for closed-form expressions for prices, profit, and welfare as a function of c.
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Figure 3: Consumer welfare, total welfare, profit, and prices when F is uniform.

distribution of costs of resale shifts upward.

The monopolist allows resale in equilibrium because preventing low-cost types from reselling

reduces the profit earned from high-cost types. Some consumers may have very low costs, forcing

the monopolist to set a negligible bundle discount if it wants to prevent resale. Instead, it may

prefer a higher discount that earns more from other consumers but allows low-cost consumers to

resell. The tradeoff is presented in Example 1, followed by a general analysis.

Example 1. Suppose that values are distributed uniformly, half of consumers have c = .2, and

the other half have c = 0. Recall that values and costs are independent. The monopolist has two

choices: it can prevent all resale by using component pricing (P1 = P2 = .5, PB = 1) and earn

profit .5, or it can offer a larger bundle discount to those with c = .2 and allow consumers with

c = 0 to resell.
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Figure 4: Consumer welfare for c = .05 (left panel) and c = .2 (right panel) when F is uniform.
The solid lines separate the regions purchasing each good.

The monopolist finds it optimal to practice mixed bundling, setting P ∗B = .9231 and P ∗1 = P ∗2 =

.6615. It earns π∗ = .5218—higher than the .5 earned without bundling—and allows consumers

with c = 0 to resell.

To prevent resale, the monopolist in Example 1 would have to abandon bundling altogether.

Instead, it prefers to allow half of consumers to resell because bundling is profitable for the other

half. The example also demonstrates that the monopolist’s optimal prices do not maximize profit

earned from consumers who do not resell. The optimal prices if all consumers have c = .2 involve

the lower bundle price PB = .875; the monopolist adjusts its prices to earn more from the consumers

who resell.

Heterogeneous costs are a plausible explanation for observed resale. Some consumers are keen

to pocket a few dollars by purchasing resold goods while others do not bother. Sellers are almost

certainly aware that consumers can resell parts of the bundle, demonstrated by efforts to prevent

resale, but they may continue to bundle as long as there is relatively little resale.

4.1 Equilibrium

To simplify the analysis, I impose Assumption 4.
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Assumption 4. F (v1, v2) is symmetric.

Assumption 4 simplifies the results by implying that the monopolist’s optimal prices satisfy

P ∗1 = P ∗2 . Because they are equal in equilibrium, I use Pi to refer to P1 and P2.

Define the critical cost c∗ as c∗ ≡ Pi − 1
2PB and let

µB(PB, c) =

∫ 1

1
2
PB−c

∫ 1

1
2
PB−c

f(v1, v2) dv1 dv2 −
∫ 1

2
PB+c

1
2
PB−c

∫ PB−v1

1
2
PB−c

f(v1, v2) dv2 dv1, (4)

µR(PB, c) =

∫ 1

1
2
PB+c

∫ 1
2
PB−c

0
f(v1, v2) dv2 dv1, (5)

πR(PB, G, c
∗) =

∫ c∗

¯
c

PB(µB(PB, c) + µR(PB, c)) dG(c). (6)

The expressions describe purchase decisions for consumers with cost c who are willing to resell

at bundle price PB. Consumers are willing to resell if c is below the critical cost c∗, defined from

2Pi = PB +2c∗, and find resale too costly if c ≥ c∗. The function µB gives the fraction of consumers

with cost c < c∗ who purchase the bundle and do not resell when the bundle price is PB. Similarly,

µR gives the fraction with c < c∗ who purchase the bundle to resell. An additional fraction µR

purchases in the resale market. The function πR gives profit earned from consumers with types

c < c∗ when c is distributed according to G(c).

Theorem 5. The monopolist’s problem is

max
P

(1−G(Pi −
1

2
PB))πN (Pi, PB) + πR(PB, G, Pi −

1

2
PB). (7)

Equilibrium resale prices are P s∗ = (PB
2 ,

PB
2 ). Consumers with c < c∗ resell and those with

c ≥ c∗ do not.

The monopolist now must consider the profit earned from consumers who find resale too costly

(the first term), consumers with costs low enough to resell (the second), and the number of con-

sumers in the two groups (which depends on c∗). The result is a tradeoff: the monopolist can

generally earn more from consumers who do not resell by increasing its bundle discount, but doing

so increases the number of consumers who engage in resale and contribute less to profit.

The tradeoff substantially complicates the monopolist’s problem. In Section 3, the effect of resale

was to cap its bundle discount. Now, resale forces the monopolist to strike a balance between the
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profitability of its prices for consumers without resale and the number of consumers who engage

in arbitrage at those prices. The tradeoff is essential to explain why the monopolist might allow

resale in equilibrium.

4.2 Resale in Equilibrium

Example 1 suggests that resale is possible in equilibrium. I provide a sufficient condition for resale

in equilibrium in Theorem 6.

Theorem 6. Assume that the prices Ṗ maximizing πN (Pi, PB) subject to Pi ≤ 1
2PB +

¯
c have Ṗi =

1
2 ṖB +

¯
c. The monopolist allows the lowest-cost type

¯
c to resell in equilibrium if 2

¯
cµR(ṖB,

¯
c)g(

¯
c) <

∂πN (Ṗi, ṖB)/∂Pi.

Theorem 6 formalizes the intuition from Example 1. By preventing the lowest-cost type from

reselling, the monopolist can gain 2
¯
c from each transaction that used to involve resale. But doing

so might not be worthwhile because the monopolist must change its prices and earn less in profit

from consumers who did not resell.

Note that the resale condition in Theorem 6 is sufficient but not necessary. It only applies to

the lowest-cost type and there could be a global optimum where resale is tolerated even if there are

no local improvements.9 Nonetheless, the intuition explains why the monopolist might allow many

types to resell. Table 1 presents examples in which more than a third of consumers have costs low

enough to resell at the monopolist’s optimal prices.

Theorem 6 requires a mild assumption, that the constraint Pi ≤ 1
2PB +

¯
c binds. The assumption

is needed to use the derivative at
¯
c and holds whenever the monopolist can increase profit by using

a larger bundle discount.

4.3 Comparative Statics

Next I consider how pricing, profit, and welfare change when the distribution of costs of resale

changes. Corollary 1 offered a general conclusion for pricing in the benchmark model: the mo-

nopolist’s bundle discount is weakly increasing in the cost of resale, implying more intense price

discrimination when resale becomes more costly. Surprisingly, the conclusion is no longer true with

a distribution of costs.

9The complexity of the seller’s problem prevents me from obtaining necessary conditions.
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Why might the monopolist reduce its discount when there are stronger barriers to resale? Unlike

in Section 3, the monopolist’s prices do not necessarily maximize profit from consumers who do

not resell for a given bundle discount—they also affect sales to consumers who resell. It is therefore

possible that, after resale becomes more costly, the seller might choose a smaller discount that earns

more from consumers who do not resell.

Rows 3 and 4 of Table 1 provide an example. The distribution in row 4 first-order stochastically

dominates the one in row 3, yet the monopolist sets a smaller discount when costs of resale are

higher. The example demonstrates that simple models without resale in equilibrium do not capture

the seller’s incentives for pricing. However, it remains true that profit increases when resale becomes

more difficult.

Theorem 7. Let G̃(c) be a distribution such that g̃(c) ≤ g(c) for all c ≤ c∗. Then the firm’s profit

is higher at G̃(c) than G(c).

Theorem 7 is directly analogous to Corollary 1 in the original model. The assumption on the

distributional shift is necessary because profit earned from resellers is not necessarily monotone

in c.10 The distributional shifts between each pair of rows in Table 1 satisfy the assumptions of

Theorem 7. As expected, profit increases in each case.

Changes in consumer and total welfare remain ambiguous, but the expressions are far more

complex than in Section 3. In the more stylized model, it is possible to consider the derivative of

prices with respect to the cost, reducing welfare changes to the effect of price changes on marginal

and inframarginal buyers. Such conclusions are not possible with a distribution of costs because a

shift in the distribution does not lead to a smooth change in optimal prices.

Consider consumer welfare, which is now the integral over c of the welfare earned by consumers

with each cost of resale c. Let CWN (Pi, PB) denote consumer welfare without resale when prices

are (Pi, PB). Consumers with c ≥ c∗ earn CWN (Pi, PB) and all others earn CWN (PB
2 + c, PB),

making overall consumer welfare with distribution of costs G(c)

CW (G,P ) = (1−G(c∗))CWN (Pi, PB) +

∫ Pi− 1
2
PB

¯
c

CWN (
1

2
PB + c, PB) dG(c). (8)

If the change in optimal prices were continuous, the change in consumer welfare for consumers

with each cost c would depend only on inframarginal consumers, as in Theorem 3. Consumers with

10With non-monotonicity, it is possible to have some G̃(c) ≥FOSD G(c) at which P is less profitable, for instance
if profit from resellers is decreasing in c on some interval and G̃(c) shifts mass upwards only on that interval.
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c < c∗ would only be affected by the change in PB when the monopolist changes prices.

If prices jump when G shifts to G′, however, some consumers will switch purchases and earn

surplus. The overall change in consumer welfare includes both the inframarginal consumers and

the switchers, adding the changes in surplus for each cost c weighted by the change in the number

of consumers with that cost across the distributions. As before, the change is ambiguous: Table 1

contains examples in which consumer welfare moves in each direction as the distribution of costs

shifts upwards.

The story is similar for total welfare. Let TWN (Pi, PB) denote consumer welfare without resale

when prices are (Pi, PB). Total welfare TW (G,P ) for the distribution G is

TW (G,P ) = (1−G(c∗))TWN (Pi, PB) +

∫ Pi− 1
2
PB

¯
c

TWN (
1

2
PB + c, PB) dG(c). (9)

Without a continuous change in prices when G shifts to G′, the change in total welfare cannot

be distilled to the values of marginal buyers. But the main insight of Theorem 4 applies because,

for consumers with cost c, the change in total welfare is driven by consumers who change their

purchase decisions at the new prices. The aggregate change is the sum of those changes, weighted

by the change in the number of consumers with type c between the distributions. The change

remains ambiguous, as demonstrated by the comparisons in Table 1.

4.4 Examples

To illustrate equilibrium and the comparative statics, I simulate the market for various distributions

of costs of resale when values are distributed uniformly. The examples are paired, with resale

becoming more costly from the first to the second distribution. The second distribution always

dominates the first in the sense of first-order stochastic dominance; the changes also satisfy the

stronger criterion in Theorem 7.

The examples use three types of distributions of costs: normal distributions, uniform distribu-

tions on [0, .23] (ending at approximately the optimal bundle discount without resale), and a split

uniform distribution. The split uniform distribution SplitUnif (x, y) spreads probability y evenly

on the interval [0, x] and probability 1− y evenly on [x, .23]. The split uniform is used in the third,

fifth, and sixth rows. For example, in the third row, it spreads .3 of the probability between 0 and

.02 and the rest between .02 and .23.

In each shift, profit increases after resale becomes more difficult. In the shift from row 3 to

19



P ∗i P ∗B c∗ π πN CW TW

N(.1, .05) 0.5476 0.9431 0.0761 0.5210 0.5297 0.3354 0.8564
N(.14, .05) 0.5615 0.9271 0.0980 0.5282 0.5354 0.3072 0.8354

SplitUnif (.02, .3) 0.5696 0.9481 0.0956 0.5156 0.5345 0.4129 0.9285
Unif (0, .23) 0.5639 0.9374 0.0952 0.5206 0.5346 0.3675 0.8881

SplitUnif (.1, .5) 0.5569 0.9433 0.0853 0.5187 0.5321 0.3723 0.8910
SplitUnif (.15, .5) 0.5785 0.9258 0.1156 0.5245 0.5390 0.3569 0.8814

N(.08, .001) 0.5459 0.9372 0.0773 0.5300 0.5300 0.2504 0.7804
N(.2, .001) 0.6347 0.8764 0.1965 0.5483 0.5483 0.2525 0.8008

Table 1: Examples of equilibrium with a distribution of costs of resale on [0, .23] when values are
uniformly distributed. The distribution SplitUnif has mass uniformly distributed on either side of
a tilt point. The tilt point is the first argument and the amount of mass to the left is the second.

row 4, the optimal bundle discount falls. Consumer and total welfare decline in the first three

comparisons but increase in the last.

5 Conclusion

The goal of this paper has been to determine the effects of resale on bundling by analyzing a

model of monopoly bundling with costly resale. I showed that resale adds a new dimension to the

monopolist’s problem, reduces profit, and has an ambiguous effect on consumer and total welfare.

The research adds to the bundling literature because resale has a significant effect on the

profitability of bundling. It also matters for policy regarding resale, demonstrating that consumers

and society may not benefit from resale when the seller bundles.

An additional contribution is the model’s use of market clearing to determine resale prices. In

the model, resale prices emerge in the equilibrium of a subgame where atomistic consumers interact

in a resale market. The approach matches observed markets, where many small sellers with varied

reservation prices trade, but has not been widely adopted in other studies of price discrimination

with resale.

Proofs

3.1 Proof of Lemma 1

Proof. Assume that P s∗ is an equilibrium price vector and that good 2 is resold in the secondary

market. Buyers must prefer purchasing good 2 in the resale market at price P s∗
2 + c to purchasing

the bundle and reselling good 1, which costs PB − (P s∗
1 − c). Hence P s∗

1 + P s∗
2 ≤ PB.
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There are three ways for resellers to provide good 2, and each requires PB ≤ P s∗
1 + P s∗

2 . First,

consumers could purchase the bundle to keep good 1 and resell good 2, paying PB − (P s∗
2 − c) for

good 1. To do so, this must be cheaper than the total resale price P s∗
1 +c, implying PB ≤ P s∗

1 +P s∗
2 .

Second, they could purchase the bundle to resell both goods, but would only do so if it is profitable,

PB + 2c ≤ P s∗
1 +P s∗

2 . Third, they could purchase only good 2 to resell, earning P s∗
2 −P2− c. This

requires P s∗
2 = P2 and c = 0, and I show that P s∗

1 + P s∗
2 < PB is impossible in this case. It cannot

be that P s∗
1 < P1 because some consumers would demand good 1 and none would resell it: resellers

would receive P s∗
1 −P1 < 0 if they bought 1 to resell, P s∗

1 +P s∗
2 −PB < 0 if they bought the bundle

to resell both goods, and v2 − PB + P s∗
1 < v2 − P s∗

2 if they bought the bundle to resell 2. Then

P1 ≤ P s∗
1 , implying P1 + P2 ≤ P s∗

1 + P s∗
2 < PB, which contradicts PB ≤ P1 + P2.

Proof of Lemma 2

Proof. Equilibrium requires the masses of consumers demanding each good in the resale market to

be equal. When the monopolist only offers the bundle, the masses µ1(PB, P
s
1 ) and µ2(PB, P

s
1 ) of

consumers who only want good 1 or good 2 are

µ1(PB, P
s
1 ) =

∫ 1

P s
1 +c

∫ PB−P s
1−c

0
f(v1, v2) dv1 dv2

µ2(PB, P
s
1 ) =

∫ P s
1−c

0

∫ 1

PB−P s
1 +c

f(v1, v2) dv1 dv2.

Define δ(P s
1 ) = µ1(PB, P

s
1 ) − µ2(PB, P

s
1 ) on [0, PB]. There is some P̂ s∗

1 satisfying δ(P̂ s∗
1 ) = 0

because δ(·) is a continuous (since F is atomless) decreasing function satisfying δ(0) ≥ 0 and

δ(PB) ≤ 0.

To be unique, δ(·) can only cross zero at a single point and so µ1(PB, P
s
1 ) and µ2(PB, P

s
1 ) can

never simultaneously be zero. Because F has a strictly positive atomless density, this only requires

that the regions of integration not simultaneously be empty. For µ1, this requires P s
1 + c < 1 and

0 < PB − P s
1 − c, or P s

1 < min{1− c, PB − c}. For µ2, it requires 0 < P s
1 − c and PB − P s

1 + c < 1,

or P s
1 > max{PB − 1 + c, c}. Such a P s

1 exists when max{c, PB − 1 + c} < min{1− c, PB − c}. The

condition becomes PB − 1 + c < 1− c when PB ≥ 1 and c < PB − c when PB < 1.

Proof of Theorem 1
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Proof. (⇒) Without loss of generality, suppose that good 1 is resold. The reseller pays PB +c−P s∗
1

for good 2 and the buyer pays P s∗
1 + c for good 1. Equilibrium requires PB + c − P s∗

1 ≤ P2 and

P s∗
1 + c ≤ P1. Assumption 2 implies that one inequality must be strict and so PB + 2c < P1 + P2.

(⇐) Suppose P1 + P2 > PB + 2c and let (P̂ s∗
1 , P̂ s∗

2 ) be the vector of pure-bundling resale prices

corresponding to PB. There are two cases. First, P̂ s∗
1 +c < P1 and P̂ s∗

2 +c < P2. All consumers who

want one good strictly prefer the secondary market and P̂ s∗ is the unique vector of resale prices.

Second, suppose P̂ s∗
1 + c ≥ P1 and P̂ s∗

2 + c < P2. Buyers of good 2 strictly prefer the resale market,

so P s
1 must fall (and P s

2 must rise) until either P1 = P s
1 +c or P2 = P s

2 +c. Since P1 +P2 > PB +2c,

it must be that P̂ s∗
1 + c− P1 < P2 − P̂ s∗

2 − c, so prices adjust until P s
1 + c = P1 and P s

2 + c < P2.

The resulting vector P s∗ = (P1− c, PB−P1 + c) is an equilibrium: fewer consumers only want good

2 than good 1 (since P s∗
1 < P̂ s∗

1 ), and consumers who want good 1 are indifferent between the two

markets, making some willing to resell and clear the resale market. The equilibrium is unique. At

any higher P s∗
1 , there would be no supply of good 1 in the resale market. At any lower P s∗

1 , there

would be excess demand for good 1.

3.2 Proof of Theorem 2

Proof. I start by showing that the optimal prices satisfy P1 + P2 ≤ PB + 2c. Suppose they do not,

so Theorem 1 implies there is resale in equilibrium at price vector P s∗. The monopolist could earn

weakly more by setting Pi = P s∗
i + c for i = 1, 2 if all purchases were made in the primary market:

consumers would receive the same goods as before, but the monopolist would earn an additional

2c on all transactions that formerly involved resale. When c > 0, the increase in profit would be

strict. Next I show profit still weakly increases if there is resale when Pi = P s∗
i + c. The profit

function without resale is continuous, so the monopolist can slightly lower P1 and P2 below P s∗
i + c

and earn profit arbitrarily close to its level if no consumers resold and Pi = P s∗
i + c.

Theorem 1 completes the argument by showing that no consumers resell when the monopolist’s

prices satisfy P1 + P2 ≤ PB + 2c, but the result relies on Assumption 2. When c > 0, Assumption

2 is not needed. Suppose consumers resold in equilibrium when the optimal prices without resale

such that P1 + P2 ≤ PB + 2c satisfy P1 + P2 = PB + 2c. The monopolist would maximize profit

by setting the highest prices such that Pi < P s∗
i + c. No such prices exist, so the only equilibrium

involves no resale. When c = 0, I rely on Assumption 2 to prevent resale, but in that case resale

does not affect profit or welfare.

3.3 Proof of Corollary 1
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Proof. The monopolist’s optimal prices for cost c are feasible at c′ > c.

Proof of Theorem 3

Proof. The regions are defined as

µ1(c) =

∫ 1

P ∗1 (c)

∫ P ∗B(c)−P ∗1 (c)

0
f(v1, v2) dv2 dv1

µ2(c) =

∫ 1

P ∗2 (c)

∫ P ∗B(c)−P ∗2 (c)

0
f(v1, v2) dv1 dv2

µB(c) =

∫ 1

P ∗B(c)−P ∗2 (c)

∫ 1

P ∗B(c)−P ∗1 (c)
f(v1, v2) dv2 dv1 −

∫ P ∗1 (c)

P ∗B(c)−P ∗2 (c)

∫ P ∗B(c)−v1

P ∗B(c)−P ∗1 (c)
f(v1, v2) dv2 dv1.

Consumer welfare is

CW (c) =
{∫ 1

P∗
1 (c)

∫ P∗
B(c)−P∗

1 (c)

0

(v1 − P ∗
1 (c))f(v1, v2) dv2 dv1

}
+

{∫ 1

P∗
2 (c)

∫ P∗
B(c)−P∗

2 (c)

0

(v2 − P ∗
2 (c))f(v1, v2) dv1 dv2

}
+

{∫ 1

P∗
B(c)−P∗

2 (c)

∫ 1

P∗
B(c)−P∗

1 (c)

(v1 + v2 − P ∗
B(c))f(v1, v2) dv2 dv1−∫ P∗

1 (c)

P∗
B(c)−P∗

2 (c)

∫ P∗
B(c)−v1

P∗
B(c)−P∗

1 (c)

(v1 + v2 − P ∗
B(c))f(v1, v2) dv2 dv1

}
.

(10)

Taking the derivative with respect to c and comparing it to zero yields the result.

Proof of Theorem 4

Proof. Total welfare is

TW (c) =
{∫ 1

P∗
1 (c)

∫ P∗
B(c)−P∗

1 (c)

0

v1f(v1, v2) dv2 dv1

}
+

{∫ 1

P∗
2 (c)

∫ P∗
B(c)−P∗

2 (c)

0

v2f(v1, v2) dv1 dv2

}
+

{∫ 1

P∗
B(c)−P∗

2 (c)

∫ 1

P∗
B(c)−P∗

1 (c)

(v1 + v2)f(v1, v2) dv2 dv1−∫ P∗
1 (c)

P∗
B(c)−P∗

2 (c)

∫ P∗
B(c)−v1

P∗
B(c)−P∗

1 (c)

(v1 + v2)f(v1, v2) dv2 dv1

}
.

(11)
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And so the change in total welfare with respect to c is

∂TW (c)

∂c
= − ∂P ∗

1 (c)

∂c

∫ P∗
B(c)−P∗

1 (c)

0

P ∗
1 (c)f(P ∗

1 (c), v2) dv2+(
∂P ∗

B(c)

∂c
− ∂P ∗

1 (c)

∂c

)∫ 1

P∗
1 (c)

v1f(v1, P
∗
B(c)− P ∗

1 (c)) dv1+

− ∂P ∗
2 (c)

∂c

∫ P∗
B(c)−P∗

2 (c)

0

P ∗
2 (c)f(v1, P

∗
2 (c)) dv1+(

∂P ∗
B(c)

∂c
− ∂P ∗

2 (c)

∂c

)∫ 1

P∗
2 (c)

v2f(P ∗
B(c)− P ∗

2 (c), v2) dv2+

−
(
∂P ∗

B(c)

∂c
− ∂P ∗

1 (c)

∂c

)∫ 1

P∗
1 (c)

(v1 + P ∗
B(c)− P ∗

1 (c)) f(v1, P
∗
B(c)− P ∗

1 (c)) dv1+

−
(
∂P ∗

B(c)

∂c
− ∂P ∗

2 (c)

∂c

)∫ 1

P∗
2 (c)

(v2 + P ∗
B(c)− P ∗

2 (c)) f(P ∗
B(c)− P ∗

2 (c), v2) dv2+

− ∂P ∗
B(c)

∂c

∫ P∗
1 (c)

P∗
B(c)−P∗

2 (c)

P ∗
B(c)f(v1, P

∗
B(c)− v1) dv1.

(12)

4.1 Proof of Theorem 5

Proof. Lemma 1 applies with heterogeneity in c because its proof applies for each type c. By the

symmetry of F (·), P1 = P2 and so equilibrium resale prices are P s∗ = (Pi
2 ,

Pi
2 ) in any equilibrium

with resale transactions.

For prices P = (Pi, PB), all types with c ≥ Pi− 1
2PB find resale too costly because PB+2c ≥ 2Pi.

The monopolist therefore earns πN (Pi, PB) from a fraction 1−G(Pi − 1
2PB) of consumers.

All other consumers are willing to share the bundle through resale. Surplus maximization with

prices (1
2PB + ck, PB) implies that for types ck satisfying ck < Pi − 1

2PB, a fraction µR(PB, ck)

acquire good 1 through resale and a fraction µB(PB, c) purchase the bundle. For type ck, the

monopolist sells µR(PB, ck) bundles to be shared and µB(PB, ck) to consumers who do not resell.

Integrating over all such types, it earns πR(PB, G, Pi − 1
2PB) from types who resell.

4.2 Proof of Theorem 6

Proof. Assume that the monopolist prevents consumers with cost
¯
c from reselling. By assumption,

the monopolist’s optimal prices under the constraint have Ṗi = 1
2 ṖB +

¯
c. I show that the monopolist
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can increase profit by increasing Pi when g(
¯
c) is small relative to the change in profit. The derivative

of profit with respect to Pi at
¯
c is

∂

∂Pi
π(Ṗ ) = g(

¯
c)
[
ṖB

(
µB(ṖB,

¯
c) + µR(ṖB,

¯
c)
)
− πN (Ṗi, ṖB)

]
+ (1−G(

¯
c))

∂πN (Ṗi, ṖB)

∂Pi

= g(
¯
c)
(
−2

¯
cµR(ṖB,

¯
c)
)

+ (1−G(
¯
c))

∂πN (Ṗi, ṖB)

∂Pi

= −2
¯
cg(

¯
c)µR(ṖB,

¯
c) +

∂πN (Ṗi, ṖB)

∂Pi
.

The second step relies on the fact that ṖB(µB(ṖB,
¯
c)+µR(ṖB,

¯
c))−πN (Ṗi, ṖB) = −2

¯
cµR(ṖB,

¯
c),

which is true because the seller earns 2
¯
c on each formerly resold transaction when type

¯
c moves

to the primary market. The conclusion follows by setting the derivative greater than or equal to

zero.

4.3 Proof of Theorem 7

Lemma 3. At the monopolist’s optimal prices P ∗, for all c ≤ c∗,

πN (P ∗) ≥ P ∗B (µB(P ∗B, c) + µR(P ∗B, c)) .

Proof. Let c̃ = supc∈[
¯
c,c∗]{P ∗B (µB(P ∗B, c) + µR(P ∗B, c))}. Assume for contradiction that πN (P ∗) <

P ∗B (µB(P ∗B, c̃) + µR(P ∗B, c̃)). If the monopolist deviated to set P = (1
2P
∗
B + c̃, P ∗B), then it would

strictly increase profit from consumers with c ≥ c̃ and earn the same amount from consumers with

c < c̃.

Proof. Let P be the optimal prices when costs are distributed under G(c). I show that the monopo-

list earns higher profit at P under G̃. Let ∆G(c) = G(c)−G̃(c), which satisfies ∆G(c) ≥ 0 for c ≤ c∗.

Consider profit from resellers at G and use the fact that πN (Pi, PB) ≥ PB (µB(PB, c) + µR(PB, c))

for c ≤ c∗ by Lemma 3.

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG(c)

=

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) d∆G(c) +

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG̃(c)
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≤
∫ c∗

¯
c

πN (Pi, PB) d∆G(c) +

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG̃(c)

= (G(c∗)− G̃(c∗))πN (Pi, PB) +

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG̃(c).

Let πG(P ) give profit for prices P under the distribution of costs G. Substituting into the profit

function at G gives

πG(P ) = (1−G(c∗))πN (Pi, PB) +

∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG(c)

≤ (1−G(c∗))πN (Pi, PB) + (G(c∗)− G̃(c∗))πN (Pi, PB)+∫ c∗

¯
c

PB (µB(PB, c) + µR(PB, c)) dG̃(c)

= πG̃(P ).
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