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Abstract

The diversion ratio is a key input to many indicators of merger harm.

Measuring the diversion ratio, however, is challenging in the presence of state

dependence driven by things like consumer switching costs. We propose an

identification strategy for diversion based on win/loss data. First, we show

that win/loss data from the merging firms and market shares for all firms in

two periods are su�cient to identify the diversion ratios between the merging

partners. Second, we show that win/loss data from the merging firms alone

are su�cient for partial identification, and we construct a lower bound that

provides a good approximation to the diversion ratio when switching costs

are high. We demonstrate the performance of our method with numerical

simulations and with an application to the Anthem/Cigna merger.
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1 Introduction

The diversion ratio is a key concept at the heart of work in antitrust and indus-

trial organization. Defined as the percentage of unit sales lost by a product whose

price has increased that are gained by a competing product, the ratio is important

in assessing the impacts from policies that a↵ect relative prices. The 2010 Federal

Trade Commission (FTC) and U.S. Department of Justice (DOJ) Horizontal Merger

Guidelines (henceforth, the “Guidelines”) emphasize that diversion ratios are a com-

ponent of upward pricing pressure (UPP). When substitute products come under

joint ownership, the UPP created by the merger is the diversion ratio between these

products times the profit margin of the good being diverted to. According to the

Guidelines, diversion “can be very informative for assessing unilateral price e↵ects,

with higher diversion ratios indicating a greater likelihood of such e↵ects.”1

However, measuring the diversion ratio is not always straightforward, particularly

when consumer preferences exhibit state dependence. Such dependence may stem

from switching costs, consumer inattention, or other factors that lead to demand

hysteresis. We have in mind situations where the probability of choosing a product

today depends on what was chosen last period. Such behavior is common for prod-

ucts sold under long-term contracts, such as health insurance or telecommunications

services.2 Market share data may include sales that took place some time ago, mean-

ing these data may reflect competitive actions that are no longer relevant. This issue

can create challenges for measuring diversion from structural demand estimation, as

such techniques frequently take market shares as an input.

An alternative strategy is to rely on information for customers that have recently

switched products. Data of this type identifies the number of customers that pre-

viously bought from one firm and who their current supplier is, which we call loss

data, and the number of customers that currently chose one firm and who their pre-

vious supplier was, which we call win data. Together we call these “win/loss” data,

though they are sometimes also referred to as “switching” or “churn” data. Such

1See §6.1 of the Guidelines.
2Switching products in these instances often involves some type of disruption for the customer,

such as having to change doctors, buy a new cell phone, or have new cable equipment installed.
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data are frequently available to antitrust authorities, at least for the merging firms,

in industries where demand exhibits state dependence.3 In these industries, con-

sumers often renew with the same provider repeatedly, forming a lucrative stream

of income should they be enticed to switch. Therefore, in these instances it is in

firms’ interest to track how their customers move between suppliers over time, which

incentivizes firms to expend e↵ort on collecting win/loss data. Our methods are not

meant for cases where switching data are available but consumption does not exhibit

state dependence.

In this paper, our goal is to derive measures of diversion that use win/loss data

in an accessible way and are consistent with a consumer demand model that in-

cludes state dependence. We consider a myopic discrete choice model, in which the

utility of a consumer in the current period depends on their choice in the previous

period. Keeping in mind the limited data typically available to antitrust practition-

ers, we propose a tiered identification strategy that relies only on market shares and

win/loss information. First, we show that the diversion ratios between the merg-

ing firms are point identified with knowledge of market shares for all firms in two

consecutive periods and win/loss data from the merging firms alone. Second, we

show that, should market share data be unavailable, win/loss data from the merging

entities are su�cient to form bounds on the diversion ratios between the merging

firms. We present results for both logit and mixed logit (with observed consumer

types) demands. Third, we demonstrate through numerical simulations that the

lower bounds we construct are informative of the true diversion ratios. We apply our

methods to data from the Anthem/Cigna merger trial (2016), thus providing a real

world example.

The most common approximations to diversion from switching data are based

on percentages of switching customers. One measure, which we call the “loss ratio,”

is the fraction of customers that switched to a given product out of all customers

that switched from another specific product. Similarly, one can calculate the “win

3Antitrust agencies arguably have more leverage to compel information from the merging firms
than from non-merging firms, as the former are beholden to the agencies for approval of (or non-
objection to) their proposed transaction, whereas the latter are not.
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ratio” as the fraction of customers that switched from a given product out of all

customers that switched to another specific product. Such calculations were done,

for instance, in the aforementioned Anthem/Cigna trial by the expert testifying on

behalf of the DOJ.4 They were also done by the Federal Communications Commission

(FCC) in the AT&T/T-Mobile investigation (2011), by the DOJ expert in the H&R

Block/TaxACT trial (2011), and by the FTC expert in the Staples/O�ce Depot trial

(2016).5

However, Carlton and Israel (2021) point out that approximating diversion with

such ratios makes potentially strong assumptions about the structure of demand.

Chen and Schwartz (2016), who characterize diversion in a Hotelling oligopoly model,

show that the loss ratio can frequently depart from diversion in significant ways. We

have a similar finding, as we show that the loss ratio can overstate or understate

diversion in our framework. Our measures of diversion are derived directly from the

model and thus address this issue.

As a caveat to our analysis, we acknowledge that win/loss data may be generated

by consumers switching between products for reasons other than changes in relative

prices. Our baseline framework side-steps this issue by relying on the logit model,

which implies that diversions due to changes in a number of factors are the same

as that due to changes in price. However, this assumption may not be appropriate

when customers have systematic di↵erences in preferences, in which case the source

of consumer switching can matter. One may also wonder about the appropriate-

ness of the logit assumption generally. In order to address these concerns, we also

calculate our diversion estimates when the true underlying model has random co-

e�cients and document when our method performs well (in the presence of price

and quality preference heterogeneity) and less well (in the presence of switching cost

heterogeneity).6

4See Dranove (2016) at slide 46.
5See the Sta↵ Analysis and Findings in WT Docket No. 11-65 at paragraph 55, available

at https://docs.fcc.gov/public/attachments/DA-11-1955A2.pdf, the H&R Block/TaxACT
Memorandum Opinion at pages 35-36, and the demonstrative slides of Carl Shapiro at slides 38-51,
available at https://www.ftc.gov/system/files/documents/cases/170216staples_redacted_
shapiro_demonstrative.pdf.

6Note that we do not correct for switching data that su↵ers from measurement error, as such
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A di↵erent approach than using win/loss data is to rely on survey data asking

customers about their substitution behavior. Although, in our experience, we have

encountered win/loss data more often than surveys in U.S. merger cases, the same is

not true of all jurisdictions. The U.K. Competition and Markets Authority (CMA)

encourages merging firms to submit survey evidence and will at times commission

surveys themselves.7 Surveys can focus specifically on the likely impact of a merger,

whereas win/loss data may reflect a variety of other market forces. On the other

hand, if win/loss data are collected in the normal course of business in order to make

competitively sensitive decisions, it seems these data are likely to be informative.

Thus, we view these di↵erent sources of data as complementary. If both are available,

we suggest that the resulting diversion estimates should be compared and weighed

against what the practitioner knows about the reliability of the underlying data

collection mechanisms. In cases where survey data are not available, perhaps because

customers are di�cult to contact or there are resource constraints on running a

survey, win/loss data can provide an alternative.

Our paper is related to a few di↵erent strands of the industrial organization liter-

ature and to current antitrust practice. Diversion ratios, along with profit margins,

are a key input into several ways of gauging the likelihood of harm from horizon-

tal mergers. Two of the most popular methods are UPP, developed by Farrell and

Shapiro (2010), and the compensating marginal cost reduction (CMCR), developed

by Werden (1996).

The literature proposes several econometric estimation techniques to recover di-

version ratios. A number of articles, following the seminal work of Berry et al. (1995)

and Goldberg (1995), provide methods for estimating flexible demand systems and

price elasticities from a variety of market-level and consumer-level datasets. Con-

lon and Mortimer (2021) take a complementary approach, showing how diversion

estimates from second-choice data or switching surveys can be interpreted as treat-

issues have been addressed in the wider econometric literature.
7See the CMA guidance document “Good Practice in the Design and Presentation

of Customer Survey Evidence in Merger Cases,” updated as of May 2018, available at
https://www.gov.uk/government/publications/mergers-consumer-survey-evidence-design-and-presentation/
good-practice-in-the-design-and-presentation-of-customer-survey-evidence-in-merger-cases.
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ment e↵ects estimators. However, these techniques require su�cient data to allow

for econometric estimation. In contrast, antitrust practitioners often have access to

limited information, sometimes only a small set of data on market shares or on lost

customers in one or two time periods. Our findings are relevant for these situations

with scarce data.

The paper proceeds as follows. Section 2 explains our demand model and the

associated diversion ratios. Section 3 contains our main identification results. We

show numerical simulations documenting the performance of our estimators in Sec-

tion 4 and results for the Anthem/Cigna example in Section 5. Section 6 concludes.

The Appendix contains additional information on extensions to nested logit demand

and some details on our Anthem/Cigna exercise. The Online Appendix includes

supplementary numerical simulation results.

2 Theoretical Background

We begin by defining our consumer demand environment and then show what di-

version ratios this setup implies. Note that we do not model the supply side of the

market, in order to maintain our focus on buyer preferences, customer switching

costs, and consumer diversion. Product characteristics are taken as given.

2.1 Consumer Set-Up

Our demand model follows the literature on consumer switching costs, as in, for

example, Dube et al. (2009). This framework has been used to study markets where

demand appears to be highly sticky, such as for healthcare (e.g. Raval and Rosen-

baum (2018); Shepard (2022)). State dependence is captured through a switching

cost parameter.8 We potentially allow for heterogeneity across products, and, in the

mixed logit specifications, across consumers.

8In the interests of allowing for flexibility in interpreting the model, we are agnostic as to what
precisely generates these switching costs. Various interpretations are possible, so long as the state
dependence is captured by last period’s purchases. The implications for consumer welfare may
depend on the specific interpretation, however.
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Let J = {0, 1, ..., J} be the set of products available and the index 0 be the

outside option. Consumer i’s indirect utility for product j 2 J at period t when

they have previously chosen product k is

Uk
i,j,t = ↵pj,t + �i,j,t + ⌘i,j,k|{z}

switching cost

+"i,j,t, (1)

where pj,t is the price, �i,j,t is a consumer-product-time specific index, ⌘i,j,k is the

switching cost if the consumer chose product k at period t� 1, and "i,j,t is an exoge-

nous Type 1 Extreme Value shock. Note that we do not consider price discrimination,

as price does not vary by consumer.9

Throughout most of this paper, we illustrate our results using the pure logit case,

letting �i,j,t = �j,t and ⌘i,j,k = ⌘j,k. We extend to mixed logit demand in Section 3.4.

Under logit, the utility in equation (1) implies that the probability of switching from

product k to j is

sj|k,t = P (at = j|at�1 = k) =
exp(↵pj,t + �j,t + ⌘j,k)P
l2J exp(↵pl,t + �l,t + ⌘l,k)

, (2)

and the market share for product j at time t is

sj,t =
X

k2J

sj|k,tsk,t�1. (3)

The market share at time t in equation (3) depends on the market shares of all

products at time t � 1 and on the probabilities of switching from each product to

product j.10 We can interpret s0,t�1, the share of consumers that chose the outside

option last period, as the share of potential new customers.

9The switching data we have typically encountered in merger reviews often lacks price informa-
tion, meaning it would be di�cult to estimate a model with customer-specific prices. Should such
data be available, allowing for price discrimination could be an interesting extension.

10A normalization of the utility function, typically on the outside option, is needed to estimate
the parameters of the demand function. The goal of our paper, however, is to estimate the diversion
ratio. Therefore, a normalization is not made explicitly.
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2.2 The Diversion Ratio

For illustrative purposes, suppose that products A and B are owned by two separate

single-product firms.11 The products are thus synonymous with firms. Define the

diversion ratio from firm A to firm B as

DA,B,t =
@sB,t

@pA,t

✓����
@sA,t

@pA,t

����

◆�1

. (4)

This ratio measures the ability of firm A to shift sales to and from firm B by adjusting

product A’s price.

Suppose firms A and B are contemplating a merger. Without the merger, if firm

A were to raise its price, that firm would consider any shift in sales to firm B a

loss. After the merger, these sales are now a gain to the firm’s merging partner,

with a value reflected in firm B’s margin. Thus, the diversion ratio is a key piece of

information in assessing the incentives to raise prices after a merger.

Our logit model with switching costs implies that the diversion ratio from A to

B is

DA,B,t =

P
j2J

�
sB|j,tsA|j,t

�
sj,t�1P

j2J
�
(1� sA|j,t)sA|j,t

�
sj,t�1

. (5)

This ratio depends not only on the switching probabilities between firms A and B,

but also on the market shares of all firms and on the switching probabilities from all

other firms to firms A and B. Implicit in this formula is a focus on the impact of

a change in the price of product A alone, holding fixed all other product attributes.

Thus, this diversion does not measure feedback responses that might occur in certain

fully specified supply models.

Due to state dependence, consumers are more likely to stay with their previous

choice. Therefore, we expect sj|j,t to be much greater than sj|k,t for k 6= j, meaning

that

sB|A,tsA|A,tsA,t�1

11Our analysis extends to multi-product firms when switching data at the product level are
available.
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and

sA|B,tsB|B,tsB,t�1

are likely to dominate the numerator of equation (5). Furthermore, these terms also

tend to be larger when sB|A,t and sA|B,t are larger. Thus, as one would expect, the

diversion ratio from A to B is high when consumers are frequently switching between

A and B.

Rearranging our diversion ratio gives

DA,B,t =
X

j2J

sB|j,t

1� sA|j,t

 
(1� sA|j,t)sA|j,tsj,t�1P
j2J (1� sA|j,t)sA|j,tsj,t�1

!

| {z }
⌘wj,A

(6)

=
X

j2J

sB|j,t

1� sA|j,t
wj,A, (7)

where wj,A are weights that reflect what products consumers previously purchased.

If there were no switching costs, the diversion ratio would simplify to that for a flat

logit,

DShare

A,B,t =
sB,t

1� sA,t
, (8)

which is often referred to as “diversion according to share.” Thus, in the spirit of

Conlon and Mortimer (2021), estimating the diversion ratio for our model can be

interpreted as calculating the weighted average of logit diversion ratios across each

type of consumer. Here the types depend on what product a customer chose last

period.

Adding switching costs to the logit allows for departures from diversion according

to share by incorporating information on past purchases. However, the model still

assumes that customer heterogeneity is e↵ectively captured by the product chosen

last period. Additional types of heterogeneity may be relevant in a given application.

For instance, some consumers may have systematically di↵erent switching costs or

preferences for product characteristics. For cases where these types of consumers

can be identified in the data, we discuss a mixed logit extension in Section 3. If

9



these consumers cannot be identified, a random coe�cients model may be more

appropriate. We give some examples with random coe�cients preferences where our

logit framework still provides useful information (and point out some instances where

it does not) in Section 4.

3 Identification of the Diversion Ratio

Here we show how to combine the model with win/loss data from the merging firms

in order to measure diversion ratios. Whether diversion is point- or set-identified

depends on what additional data on market shares are available.

3.1 Win/Loss Data

Win/loss data from the merging firms track the number of customers switching in

and out of purchasing from firms A and B. Specifically, the loss data of firm A report

the number of customers who chose A last period, and what their choice this period

was. That is, these data give the conditional probability of switching from A or from

B to other firms,

P (at = j|at�1 = A) and P (at = j|at�1 = B) 8j 2 J . (9)

On the other hand, the win data of firm A report the number of customers who chose

A this period and what their previous choice was last period. That is,

P (at�1 = j|at = A) and P (at�1 = j|at = B) 8j 2 J (10)

are observed from the win data of A and B. We call these the win data shares. The

win data do not directly provide us with information on the conditional probability of

switching from any product j to the merging firms, as they do not report information

on the customers that did not switch to A or B this period. As a result,

P (at = A|at�1 = j) and P (at = B|at�1 = j) 8j 2 J \ {A,B} (11)

10



are not observed.

Using these win/loss data, one can construct two common approximations of the

diversion ratio from A to B,

DWin

A,B,t =
P (at�1 = B|at = A)

1� P (at�1 = A|at = A)
(12)

DLoss

A,B,t =
P (at = B|at�1 = A)

1� P (at = A|at�1 = A)
, (13)

where we refer to DWin

A,B,t as the conventional win ratio and DLoss

A,B,t as the conventional

loss ratio. The win ratio in (12) captures the fraction of new consumers won by A

that came from B; the loss ratio in (13) captures the fraction of consumers lost by

A that went to B.

As can be seen by inspection, neither of the conventional measures are guaranteed

to equal the diversion ratio given by equation (5). This echoes the finding of Chen

and Schwartz (2016), who show that the loss ratio can overstate or understate the

true diversion ratio in a linear Hotelling model. We discuss similar findings for our

logit switching cost model in Section 4.

When applying the identification methods in this paper, we assume that the rel-

evant win/loss data are generated by changes in relative prices. Whether this is

true depends on the specific application. If the logit assumption holds, the diversion

ratios with respect to changes in quality or switching costs are the same as that for

price. In either case, the appropriate weighted average of consumer-level diversion

ratios has weights given by (7). However, this equivalence does not hold when there

are random coe�cients. Random coe�cients may be appropriate if, for instance,

consumers have systematic di↵erences in their demand for certain product charac-

teristics or in their switching costs. The latter might be true if some customers have

lower switching costs due to a change in their life circumstances, and the presence of

such consumers may generate switching data that put more weight on these buyers

relative to the logit case. We explore some examples of these alternative models and

how they impact our simulation results in Section 4.
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3.2 Point Identification of the Logit Diversion Ratio

The logit diversion ratio in equation (5) consists of the conditional winning proba-

bilities at period t for firms A and B, {sB|j,t, sA|j,t} 8j 2 J , and the market shares

of all products at period t � 1. Assume that we have access to win/loss data for

firms A and B in this period, plus market share data for all firms this period and

the previous period. We show that the logit diversion ratios between A and B are

then point identified.

The loss data from the merging firms report P (at = A|at�1 = B) = sA|B,t,

P (at = B|at�1 = A) = sB|A,t, P (at = A|at�1 = A) = sA|A,t, and P (at = B|at�1 =

B) = sB|B,t. However, these data do not report sA|j,t for j 62 {A,B}, sB|j,t for j 62
{A,B}, nor sj,t�1 for all j. Nevertheless, the win data do provide some information

about the winning probabilities, sA|j,t and sB|j,t for j 62 {A,B}. To see this, note

that the win data give the win data shares as shown in (10). By Bayes rule, we know

that the winning probability of A from j can be written as the product of the win

data share and the ratio of present to past market shares:

P (at = A|at�1 = j) = P (at�1 = j|at = A)| {z }
observed from the win data

P (at = A)

P (at�1 = j)
. (14)

Therefore, if aggregate market shares from two consecutive periods are available, we

can point identify the winning probabilities.12

The data requirements for point identification are reasonably low, as they can

be satisfied by having access to small sets of market share data from consecutive

periods. There is no requirement that these share data be matched to prices, that

they be voluminous enough, nor that they have variation enough to make demand

estimation feasible. Antitrust authorities frequently collect market share data for

the purpose of calculating the Herfindahl–Hirschman Index (HHI), as described in

§5 of the Guidelines, so we believe that the data we suggest are obtainable in many

cases. However, we also acknowledge that antitrust practitioners may not always

12In fact, this discussion shows that we require market shares for all products in period t � 1
and market shares for only the merging parties in period t.
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have share information. We address this situation in the next subsection.

3.3 Bounding the Logit Diversion Ratio

Assume now that we have access to only win/loss data for firms A and B in period t.

We show that the diversion ratios between A and B are partially identified as worst

case bounds (as in Manski (2003) and (2009)). Once bounds for the diversion ratio

have been calculated, they can be plugged into the formulas for UPP or CMCR to

generate bounds for those measures in turn.

Using Bayes rule, we know that

sA|j,tsj,t�1 = P (at = A|at�1 = j)P (at�1 = j)

= P (at�1 = j|at = A)
P (at = A)

P (at�1 = j)
P (at�1 = j)

= P (at�1 = j|at = A)P (at = A),

so the logit diversion ratio can be simplified to

D̂A,B,t =

P
j

�
sB|j,tsA|j,t

�
sj,t�1P

j

�
(1� sA|j,t)sA|j,t

�
sj,t�1

=

XXXXXXP (at = A)
P

j sB|j,tP (at�1 = j|at = A)
XXXXXXP (at = A)

P
j(1� sA|j,t)P (at�1 = j|at = A)

=

P
j sB|j,tP (at�1 = j|at = A)

P
j(1� sA|j,t)P (at�1 = j|at = A)

,

which is a function of the winning probabilities of the merging firms and the win data

shares of A. From the loss data of the merging firms, we observe sA|A,t, sA|B,t, sB|A,t,

and sB|B,t, but not sA|j,t and sB|j,t for j 62 {A,B}. Since these unknown objects are

probabilities, however, we know that they are bounded by zero and one.

Using the fact that sA|j,t � 0 and sB|j,t � 0 for all j 62 {A,B}, we can construct

13



the lower bound of the diversion ratio:

D̂A,B,t =

P
j sB|j,tP (at�1 = j|at = A)

P
j(1� sA|j,t)P (at�1 = j|at = A)

�
P

j2{A,B} sB|j,tP (at�1 = j|at = A)
P

j(1� sA|j,t)P (at�1 = j|at = A)

�
P

j2{A,B} sB|j,tP (at�1 = j|at = A)

1�
P

j2{A,B} sA|j,tP (at�1 = j|at = A)
:= DLower

A,B . (15)

This lower bound can be calculated using only the win/loss data of the merging

firms. Namely, it requires the losing probabilities of the merging firms, sA|B,t and

sB|A,t, the probabilities of remaining with A or B, sA|A,t and sB|B,t, and the win data

shares of firm A, P (at�1 = A|at = A) and P (at�1 = B|at = A).

The lower bound in (15) is likely to be informative about the diversion ratio if

switching costs are high. In markets where switching costs are sizeable, sA|j,t and

sB|j,t are likely to be small for j 62 {A,B}. Therefore, setting those probabilities equal
to zero will not result in the loss of much information. If, however, switching costs

are small, then the lower bound will be less informative. Naturally, the bound can

be sharpened if one obtains additional win/loss data from other market participants

besides the merging firms.

To construct an upper bound, we use the inequalities sA|j,t  1 and sB|j,t  1,

D̂A,B =

P
j sB|j,tP (at�1 = j|at = A)

P
j(1� sA|j,t)P (at�1 = j|at = A)


P

j2{A,B} sB|j,tP (at�1 = j|at = A) +
P

j 62{A,B} P (at�1 = j|at = A)
P

j(1� sA|j,t)P (at�1 = j|at = A)


P

j2{A,B} sB|j,tP (at�1 = j|at = A) +
P

j 62{A,B} P (at�1 = j|at = A)

1�
P

j2{A,B} sA|j,tP (at�1 = j|at = A)�
P

j 62{A,B} P (at�1 = j|at = A)

:= DWorst Upper

A,B .

We call this the “worst case” upper bound, because it approximates the winning

probabilities for A and B with ones that may be much greater than their true values.
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If switching costs are high, we could assume that sA|j,t  sA|A,t and sB|j,t  sB|B,t

for j 62 {A,B}, and tighten the upper bound to

D̂A,B 
sB|A,tP (at�1 = A|at = A) + sB|B,t(1� P (at�1 = A|at = A))

1� sA|B,tP (at�1 = B|at = A)� sA|A,t(1� P (at�1 = B|at = A))
⌘ DUpper

A,B .

However, it is possible that the upper bound DUpper

A,B could exceed one. In that

scenario, we would bound the diversion ratio from above by one.

Although, for the reasons we explained previously, the upper bound of the diver-

sion ratio is likely to be loose, we also argue that the lower bound is likely to be tight

when switching costs are high. As a result, the lower bound of the diversion ratio

is potentially a useful tool for antitrust authorities, as it can indicate the minimum

levels of UPP or CMCR one can expect from a merger. If the lower bounds of UPP

or CMCR are far from zero, this would provide strong evidence that the merger is

likely to be anticompetitive, unless sizeable e�ciencies are also expected.13

3.4 Allowing for Flexible Substitution Patterns

Let X denote a finite set of observed consumer characteristics, such as income levels.

These characteristics separate consumers into groups, each with a di↵erent “type.”

Assume that we have access to win/loss data from the merging firms that are also

reported by consumer type. Then we can extend our results to allow for more flexible

substitution patterns beyond the logit.

We build a mixed logit specification that is a discretized version of the random

coe�cients logit model with observed consumer characteristics. This specification

has appeared elsewhere in the industrial organization literature (see, for example,

Berry and Haile (2016)). The model allows switching costs to be consumer-type

dependent, which is important in instances where customers vary in their propen-

sity to switch according to meaningful patterns. For example, in the trial for the

13One rule of thumb is that a CMCR or UPP greater than what would be canceled out by a
marginal cost e�ciency of 5% is “large,” under the assumption that e�ciencies beyond that level are
unlikely. See Carl Shapiro’s remarks at the American Bar Association Section of Antitrust Law Fall
Forum, November 18, 2010, available at https://www.justice.gov/atr/file/518246/download.
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H&R Block/TaxAct merger, the expert testifying on behalf of the DOJ examined

switching data from the Internal Revenue Service that categorized customers by the

complexity of their tax returns into Simple, Intermediate, and Complex groups.14

Such win/loss data organized by these customer types would fit well with our mixed

logit framework.

We assume that the switching probability from k to j conditional on X = x for

each x 2 X , or sxj|k,t = P (at = j|at�1 = k,X = x) for j, k 2 J , follows the logit.

Define sxk,t�1
= P (at�1 = k|X = x) as the market share of k at t � 1 among the

type-x consumers. The market share of product j at t is

sj,t =
X

x2X

X

k2J

sxj|k,ts
x
k,t�1

P (X = x), (16)

which is a weighted sum of market shares of product j over consumer types x 2 X .

The mixed logit diversion ratio is

D̃A,B =

P
x2X

P
j2J sxB|j,ts

x
A|j,ts

x
j,t�1

P (X = x)
P

x2X
P

j2J (1� sxA|j,t)s
x
A|j,ts

x
j,t�1

P (X = x)

=

P
x2X

P
j2J sxB|j,tP (at�1 = j|at = A,X = x)P (X = x|at = A)

P
x2X

P
j2J (1� sxA|j,t)P (at�1 = j|at = A,X = x)P (X = x|at = A)

, (17)

where P (X = x|at = A) measures the fraction of customers purchasing A that are

of type x and P (at�1 = j|at = A,X = x) is the win data share of A conditional

on type x.15 Due to switching costs, the diversion ratio (17) is dominated by the

terms sxB|A,tP (at�1 = A|at = A,X = x) and sxB|B,tP (at�1 = B|at = A,X = x)

for each x 2 X . Moreover, their contribution to the diversion ratio depends on

P (X = x|at = A), the importance of type-x consumers in firm A’s customer base.

Since we assume the available win/loss data contain information on consumer

characteristics, allowing for the calculation of probabilities by types, we can apply

14See the H&R Block/TaxACT Memorandum Opinion at page 34.
15We maintain the assumption that the price coe�cient is constant. That is, we rule out any

interaction of consumer characteristics and price. It would be possible to relax this assumption if
one had rich enough switching data for demand estimation.
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our identification results from the previous subsections. Thus, P (X = x|at = A),

P (X = x|at = B), sxA|A,t, s
x
A|B,t, s

x
B|B,t, s

x
B|A,t, P (at�1 = j|at = A,X = x), and

P (at�1 = j|at = B,X = x) for all x 2 X and j 2 J are identified from the win/loss

data of the merging firms. Similar to the point identification results from Section

3.2, if market shares conditional on each x 2 X over two consecutive periods are

available, sxA|j,t and sxB|j,t for all j 62 {A,B} are identified using Bayes rule. As a

result, the diversion ratios between A and B are point identified.

If, instead, detailed market share data are not available, we can impose sxB|j,t =

sxA|j,t = 0 for all j 62 {A,B} and x 2 X to construct a lower bound:

D̃Lower

A,B =

P
x2X

P
j2{A,B} s

x
B|j,tP (at�1 = j|at = A,X = x)P (X = x|at = A)

P
x2X

P
j2{A,B}(1� sxA|j,t)P (at�1 = j|at = A,X = x)P (X = x|at = A)

.

Similarly, imposing sxB|j,t = sxB|B,t and sxA|j,t = sxA|A,t for j 62 {A,B} allows us to

construct an upper bound

D̃Upper

A,B =

P
x2X

✓
sxB|A,tP (at�1 = A|at = A,X = x)+

sB|B,t(1� P (at�1 = A, |at = A,X = x))

◆
P (X = x|at = A)

P
x2X

 
1� sxA|B,tP (at�1 = B|at = A,X = x)�

sxA|A,t(1� P (at�1 = B|at = A,X = x))

!
P (X = x|at = A)

.

These results parallel those in Section 3.3 for the logit.

Although our method extends to models with observed heterogeneity, the key

limitation is that consumers are assumed to have the same diversion ratio conditional

on their past choice and observable characteristics. In Appendix A, we show that

our lower bound works for a nested logit model in which the products of the merging

firms are in the same nest. Furthermore, we assess the applicability of our bounds

to diversion ratios derived from random coe�cients models in Section 4.3 and in the

Online Appendix.
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4 Numerical Simulations

In this section, we illustrate numerically how our bounds relate to conventional mea-

sures of diversion (both according to share and according to the loss ratio) and to

the true diversion ratio under the baseline logit switching model. In addition, we

examine the performance of our bounds under a random coe�cients logit model.16

4.1 Setup

Our numerical design resembles the substitution patterns of the Hotelling linear city

model with four inside goods and one outside good, giving the set j 2 {0, . . . , 4}.
This design allows for asymmetric switching costs in a systematic way, and allows us

to focus on switching between adjacent pairs. Given the small number of products

in the market, their linear arrangement is not cruicial to our results. Products are

“located” in increasing order according to their index number. When a customer

chose product 2 in the last period, we allow for the cost of switching to the left

(product 1) to potentially di↵er from the cost of switching to the right (product 3).

The indirect utility for a product j 2 {0, . . . , J} is given by

ui,j,t =

8
>>>>>>>>>><

>>>>>>>>>>:

�0 + ���i � pj,t + (1 + �vi)⌘
P
j,j1{ai,t�1 = j}+ ⌘NL

j,j�11{ai,t�1 = j � 1}

+ ⌘NR
j,j+11{ai,t�1 = j + 1}+ ✏i,j,t, 1  j  J � 1

�0 + ���i � pJ,t + (1 + �vi)⌘
P
J,J1{ai,t�1 = J}+ ⌘NL

J,J�11{ai,t�1 = J � 1}

+ ⌘NR
J,1 1{ai,t�1 = 1}+ ✏i,J,t, j = J

✏i,0,t, j = 0

(18)

where J = 4, the ✏i,j,t are i.i.d. Type 1 extreme value shocks, vi and �i are i.i.d.

standard normal, � � 0, �� � 0, pj,t are prices, and

ai,t = arg max
j2{0,1,...,J}

ui,j,t.

Prices pj,t are determined assuming single-product firms maximize myopic profits

16We leave results for the mixed logit model to the Online Appendix.
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given marginal costs cj,t.17 The �vi and ���i allow for the possibility of random

coe�cients on switching costs and the constant term, respectively. In our baseline

model, we use the flat logit (� = �� = 0).18 As a robustness check, we assess the

performance of our bounds in the presence of random coe�cients by varying � and

�� (and hence the degree of consumer heterogeneity).

The parameters ⌘P , ⌘NL , and ⌘NR allow for switching costs and switching cost

heterogeneity. When all the ⌘ parameters are zero, the model collapses to the usual

static logit model. When the ⌘ parameters are not zero, they allow the switching

probability P (ai,t = j|ai,t�1 = k) to potentially di↵er from P (ai,t = j|ai,t�1 = l) for

k 6= l. The ⌘P measures the baseline cost of switching away from any other previous

product. The ⌘NL adds a benefit to switching from a product to its left neighbor

(e.g., it encourages switching from 2 to 3). Analogously, the ⌘NR adds a benefit to

switching from a product to its right neighbor (e.g., it encourages switching from 3

to 2).

We simulate 5000 consumers who are initially assigned to each product with

equal likelihood, and we compute their switching probabilities after 19 periods of

burn-in.19 We present two sets of results. The first design sets ⌘NL = ⌘NR = 2,

allowing for equal switching costs between the neighboring products; the second

design sets ⌘NL = 0 and ⌘NR = 2, allowing for asymmetric switching patterns. The

second design implies that, for example, the switching probability from product 3

to 2 is higher than that from product 2 to 3. We vary the degree of switching costs

⌘P and, for the random coe�cients specifications, consumer heterogeneity � in both

designs.20 Using the switching probabilities generated from the model, we compute

17We draw the marginal costs from a log-normal distribution. Specifically, we assume log(cj,t) ⇠
N(0, 1/10).

18We set �0 = 2 for the baseline model.
19Switching probabilities are generated based on new prices and the logit shocks drawn for each

period.
20For both designs, shares of the included products are roughly equally split, but they change

gradually as the parameters change. For example, s1 ⇡ 0.35 and sJ ⇡ 0.15 when ⌘NL = 0 and
⌘NR = 2, whereas s1 ⇡ 0.2 and sJ ⇡ 0.2 when ⌘NL = ⌘NR = 2 and ⌘P is small. In most designs,
approximately 60% to 95% of consumers stay with the same product or switch to adjacent products.
When ⌘P > ⌘NL + ⌘NR , staying with the same product is more likely than switching to adjacent
products.
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the true diversion ratio, the conventional loss ratio from equation (13), diversion by

share from equation (8), and our proposed lower bound, worst upper bound, and

upper bound.

4.2 Baseline Model

Figures 1 and 2 summarize the simulation results from firm 2’s perspective. The

figures show mean estimates out of 100 replications for each specification. In the

figures, “conventional” denotes the loss ratio calculated from win/loss data, and

“by share” denotes diversion calculated according to share. The lower and worst

case upper bounds cover the true diversion ratio in all specifications. The “upper

bound,” however, may not be a proper upper bound for the diversion ratio when ⌘P

is small, because the additional restrictions used to tighten the upper bound may

fail when switching costs are low. The conventional ratio and diversion by share can

over or underpredict the true diversion ratio.

Although the lower bound can be far from the truth when switching costs are low,

the lower bound converges to the truth as the switching cost from ⌘P increases.21

As we explained in Section 3, the lower bound is more likely to be informative when

switching costs are high, as then the switching probabilities are more likely to be

accurately approximated by zero. Our simulations show that the lower bound comes

within 80% of the true diversion ratio from firms 2 to 3 when the probability of

staying with the same product is 55%.22 Since win/loss data are often collected in

industries where one would suspect switching costs are high, our lower bound has

the potential to be useful in a number of applications.23 In Sections 1 and 2 of the

Online Appendix, we show that these findings extend to measures of UPP and to

the mixed logit specification, respectively.

21The switching costs in the simulations range from 0% to 100% of equilibrium prices (the
simulated equilibrium prices range from 2.5 to 3), which are considered moderate with respect to
the results in Arie and Grieco (2014).

22This occurs when ⌘P = 2.8, ⌘NL = 0, and ⌘NR = 2.
23For example, we expect switching costs to be high in products sold via long-term contracts,

such as health insurance or wireless services. Merger cases in these industries have featured win/loss
data, as in the Anthem/Cigna trial discussed in Section 5.
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Figure 1: Diversion from Firm 2, ⌘NL = ⌘NR = 2
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Figure 2: Diversion from Firm 2, ⌘NL = 0, ⌘NR = 2

Our results for the upper bounds are more mixed. The worst case upper bound

is quite loose in all instances, though it is not violated. The upper bound is violated

when switching costs are low, in this instance when ⌘P falls below the range of 1 to 2.
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Therefore, we consistently find that our bounds perform best when switching costs

are high, though the lower bound may be more useful because it is never violated.

Thus, when the lower bound is high, it is strong evidence that a merger may be

problematic.

In Section 4 of the Online Appendix, we show that as ⌘P and ⌘NR get larger,

the conventional ratio becomes smaller than the true diversion ratio, while the lower

bound approaches the true ratio. This means that the conventional diversion ratio

may predict lower UPP than the truth when consumers exhibit strong state de-

pendence overall and there is a tendency to switch from product 3 to product 2.

Similarly, as ⌘P and ⌘NL get larger, the conventional diversion ratio becomes larger

than the true diversion ratio, while the lower bound still approaches the true ratio.

Importantly, the true diversion ratios and the lower bounds yield similar results in

both scenarios, while the conventional ratios o↵er opposing conclusions in terms of

evaluating UPP.

4.3 Random Coe�cients

Here we examine the performance of our bounds using switching probabilities gen-

erated by models with random coe�cients on the constant and on switching costs,

setting �� = 0.5 and varying � in equation (18). We set �0 = 5 for the random coef-

ficients models. In this setup, our bounds are derived with a misspecified model, and

we expect the bounds may be violated as �, the variance of the random coe�cient on

switching costs, increases. We vary the magnitude of � in equation (18) to assess the

sensitivity of our bounds relative to the degree of unobserved consumer heterogeneity.

We show the results from firm 2’s perspective for succinct presentation.

The left panels of Figure 3 present the diversion ratios from firms 2 to 1 when

� = 0, 1, and 3. Overall, our upper and lower bounds cover the true diversion ratios

in almost all cases. The truth is slightly below the lower bound when � = 3 and

⌘P = 3. Our lower bound tends to approach the truth from below as the switching

cost ⌘P increases. The conventional ratio, on the other hand, overpredicts the actual

diversion ratio.
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Figure 3: Random Coe�cients Model, ⌘NL = 0, ⌘NR = 2

(a) � = 0

(b) � = 1

(c) � = 3
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The right panels of Figure 3 present the diversion ratios from firms 1 to 2. By

design, consumers are less likely to switch from firms 1 to 2 than from firms 2 to

1. Our lower bound is violated when � = 3, particularly as ⌘P increases. When

⌘P is relatively high, consumers are less likely to switch on average. As � increases,

however, the variance of switching also increases, as more consumers are likely to

experience large negative shocks to their switching costs. Since these switches are

not directly generated by price changes, in this case our lower bound can be higher

than the true diversion ratio. Diversion by share and the conventional ratio, on the

other hand, tend to underpredict the truth.

In Section 3 of the Online Appendix, we examine the performance of our bounds

with switching data generated from additional random coe�cients models. When

the random coe�cients are on price or on exogenous product characteristics, our

lower bounds perform well in the sense that they are not violated under the set of

parameters we consider, even when the variance of the random coe�cient is high.

These exercises show that one should be cautious about applying our bounds when

one believes that consumers have substantial heterogeneity in switching costs, as op-

posed to heterogeneity in preferences for price or quality. Heterogeneity in switching

costs might be present, for example, if some consumers experience a sudden shift in

their costs due to changes in their life circumstances, such as from moving residences

or changing jobs. In practice, if the reasons for switching were observed, the bounds

could be measured conditional on these reasons to improve the accuracy of the di-

version ratio estimates.24 Another strategy would be to focus on data collected soon

after price changes, in the hope that switches driven by idiosyncratic factors would

form a smaller percentage of the data.25

The Online Appendix also includes results where the true model is a random

coe�cients specification without switching costs. Our goal with these simulations

24The expert testifying on behalf of the DOJ in the H&R Block/TaxACT case used this strategy,
by separating switching data for tax returns based on whether consumers had experienced a change
in their return complexity, as categorized by the IRS. See the H&R Block/TaxACT Memorandum
Opinion at page 34.

25The FCC used this strategy in the AT&T/T-Mobile case by examining switching data from
periods where carriers introduced new wireless plan pricing. See the Economic Analysis Appendix
to Sta↵ Analysis and Findings in WT Docket No. 11-65 at pages C-10 to C-13.
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is to assess the situation where consumer heterogeneity may be mistaken for state

dependence. In this case our lower bounds contain the true diversions, but are

typically less tight and hence less informative. Therefore, the lower bound, while

still valid, tends to conservative. This result is intuitive, because our lower bound

is constructed by assuming a number of switching probabilities are zero, when in

reality, if the true model lacks switching costs, these probabilities are likely to be

higher. Therefore, caution should be exercised if one is unsure if state dependence

is present. Practitioners may have to rely on their knowledge of the industry to

assess whether switching costs are relevant. However, if the lower bound happens to

show a high diversion, this is evidence that substitution is high even according to a

potentially conservative estimator.

5 Application to Anthem/Cigna

We now apply our bounds approach to a real world example, based on information

from the Anthem/Cigna merger trial. In 2015, Anthem, the largest health insurer

in the Blue Cross and Blue Shield Association, entered into an agreement to buy

Cigna, another insurer, for over $54 billion. The DOJ, eleven states, and the District

of Columbia filed suit to block the merger in 2016, eventually leading to a civil trial

in U.S. District Court that began in November 2016 and concluded in January 2017.

The products at issue were the provision of health insurance to large and national

accounts employers, including both fully insured (FI) and administrative services

only (ASO) accounts.26

As part of their case, the government presented economic expert testimony on

the extent of consumer harm that was likely to result from the lessening in horizontal

competition between Anthem and Cigna.27 The economic expert testifying on behalf

26With FI products, the health insurance company carries the financial risk for healthcare claims.
With ASO products, the employer assumes the financial risk, and instead hires the health insur-
ance company to provide administrative services, such as billing and negotiating contracts with a
healthcare network.

27The government expert testified four separate times, covering various aspects of the case. We
focus on the first testimony, covering competition for national accounts customers, as this was
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of the plainti↵s, David Dranove, argued that Anthem and Cigna were close competi-

tors, in part by presenting diversion estimates calculated by share (as in equation

(8)) alongside those calculated from loss ratios (as in equation (13)) and win ratios

(as in equation (12)). Thus, we can compare our bounds estimates with these re-

ported numbers. The plainti↵s’ expert also argued that prices for FI and ASO plans

sold to large employers would rise post-merger, and presented harm estimates based

on (1) merger simulations assuming diversion according to share, (2) UPP assuming

diversion according to share, and (3) UPP measuring diversion from win/loss data.

In what follows, we compare UPP calculated with our lower bound measure to the

harm estimates presented at trial.

There are some caveats to our analysis. First, we rely only on information dis-

closed publicly as part of the trial proceedings. We lack certain confidential data

that the plainti↵s’ expert had access to, and therefore this exercise should be viewed

as illustrative rather than a precise measure of the merger’s impact. Second, the

expert used an auction model (without state dependence) for merger simulations,

rather than a Bertrand logit.28 It is not clear from the public trial materials whether

the expert made any adjustments to the standard Bertrand UPP calculation in order

to align with the auction specification he used for simulations. However, subsequent

work published by the expert in Dranove et al. (2019) that calculates UPP for the

Anthem/Cigna merger does not adjust for the auction form. Therefore, we do the

same and rely on UPP derived under Bertrand competition.29

We use the diversion ratios by win/loss data as documented in Dranove (2016)

to back out the winning probabilities and win data shares of the merging parties.

See Appendix B for more details. Since market shares for two periods and the

winning shares of products other than Anthem and Cigna are not reported publicly,

we cannot point identify the diversion ratio. However, we can use the win/loss data

of the merging parties to bound the diversion ratio.

ultimately the part of the case that was ruled on in the District Court opinion.
28See the discussion in the Anthem/Cigna District-level Memorandum Opinion at pages 66-67.
29We also do not account for any merger impacts on bargaining with upstream suppliers, which

was another topic discussed extensively during the trial. Those vertical issues are examined in Sheu
and Taragin (2021).
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Table 1: Diversion Ratio Estimates

Expert Demonstrative DAnthem,Cigna DCigna,Anthem

By Share 11% 43%
Loss Ratio 18% 61%
Win Ratio 35% 55%
Our Estimates
Lower Bound 25% 55%
Upper Bound 82% 98%

Notes: The top panel of this table reports the diversion ratios from Anthem to

Cigna and from Cigna to Anthem as presented by Dranove (2016) on slides 46

and 47 of Plainti↵s’ Exhibit PDX005, estimated from the bar charts appearing

on those slides. The bottom panel reports our bound estimates.

Table 1 reports the diversion ratios from the trial demonstrative alongside our

estimates. Our lower bounds for DAnthem,Cigna and DCigna,Anthem are roughly in the

range of the diversion ratios implied by the win/loss data, but higher than the

diversions implied by shares. Our results suggest that the estimated lower bounds

of the diversion ratio resemble the win/loss diversions used by the plainti↵s’ expert,

meaning that the harm estimate presented at trial is likely a lower bound to the

actual harm of the merger. Our estimated upper bounds, however, are not tight

(being close to one) and therefore are in all likelihood less informative about the

diversion ratios.

We now examine the implications of our diversion estimates for harm from the

merger, as measured by UPP. The UPP of product A created by merging ownership

with product B is defined as

UPPA,t = (pB,t � cB,t)DA,B,t, (19)

which is simply the margin of product B times the diversion ratio from A to B. As

originally conceptualized, UPP was not meant to predict the size of the post-merger

price increase, but rather whether an increase will occur. However, Miller et al.

(2017) demonstrate that the value of UPP can be a reasonably accurate indicator

of the magnitude of a potential price increase, particularly for log-concave demand
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Table 2: Total Static Employer Harm (Millions of $)

Harm Measure
Baseline
(ASO+FI)

With Claimed
Variable
Cost Savings
(ASO + FI)

With Claimed
Variable
Cost Savings
(ASO)

Merger Simulation 210 190 195
UPP (Diversion by Share) 390 300 310
UPP (Diversion by Win/Loss) 910 850 600
UPP (Lower Bound) 862 804 568
UPP (Upper Bound) 1940 1809 1278
Notes: The top panel of this table reports the harm calculations as presented by Dranove (2016) on slide

48 of Plainti↵s’ Exhibit PDX005, estimated from the bar chart appearing on that slide. “Diversion by

Share” assumes that diversion is proportional to market shares, while “Diversion by Win/Loss” assumes

that diversion is measured according to the average of the loss and win ratios reported from win/loss data.

The bottom panel reports our estimates assuming diversion is equal to our estimated bounds. Columns

labeled “ASO+FI” cover both administrative services only and fully insured customers, while the column

labeled “ASO” covers just administrative services only customers.

systems.30

We use our estimated bounds to calculate the harm from the merger. The top

panel of Table 2 displays the harm from the merger estimated by the plainti↵s’ expert

using merger simulation and UPP analysis when the diversion ratio is approximated

by market shares and by win/loss data. We impute the margin implied by the harm

measures by assuming the expert used the average diversion ratio as an input to

the UPP. We then multiply the estimated lower bound by the imputed margin to

obtain a lower bound for the harm. We find that the harm of the merger is at least

$862, $804, and $568 million per year under the baseline, with variable cost savings

for ASO and FI, and with variable cost savings for ASO only options, respectively.

The variable cost savings account for some e�ciencies that Anthem claimed would

be achieved by the merger. Our lower bound estimates are close to the win/loss

UPP harm estimates from the expert’s trial demonstrative, suggesting that the UPP

estimates the expert reported are within the range of the true UPP harm. This

30As Miller et al. (2017) discuss, using UPP in this manner amounts to constructing a first-
order approximation of the price increase (following Ja↵e and Weyl (2013)), assuming that the
pass-through matrix is equal to the identity matrix.
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supports the argument that the merger was likely to harm consumers.

6 Conclusion

Although the importance of the diversion ratio is widely recognized in merger re-

views, measuring diversion raises a number of di�culties. Antitrust authorities and

practitioners frequently lack the data necessary to perform demand estimation, which

may lead them to consider measures built from market shares or win/loss data. We

show that these measures may perform poorly in the presence of state dependent

preferences.

In response, we provide identification results for the diversion ratio that rely on

the win/loss data of the merging firms. We have two main findings. First, the diver-

sion ratio is point identified if the win/loss data of the merging parties and market

share data for two consecutive periods are available. Second, the diversion ratio is

partially identified if only the win/loss data of the merging parties are available. In

the latter case, we derive lower and upper bounds that can be easily used in UPP

and CMCR calculations. The lower bound is informative about the true diversion

ratio if switching costs are high.

As a caveat to our analysis, our diversion estimates are derived from assuming

consumers have logit demand with state dependence. Using numerical experiments,

we show that our methods still perform well in the presence of random coe�cient

preferences for price and quality, but less well for cases with highly heterogeneous

switching costs. An interesting area for future research would be to develop similar

identification results for other models of consumer behavior.

30



References

Arie, Guy and Paul Grieco, “Who Pays for Switching Costs?,” Quantitative

Marketing and Economics, 2014, 12.4, 379–419.

Berry, Steven, James Levinsohn, and Ariel Pakes, “Automobile Prices in

Market Equilibrium,” Econometrica, 1995, 65 (4), 841–890.

Berry, Steven T. and Philip A. Haile, “Identification in Di↵erentiated Products

Markets,” Annual Review of Economics, 2016, 8, 27–52.

Carlton, Dennis W. and Mark K. Israel, “E↵ects of the 2010 Horizontal Merger

Guidelines on Merger Review: Based on Ten Years of Practical Experience,” Re-

view of Industrial Organization, 2021, 58, 213–234.

Chen, Yongming and Marius Schwartz, “Churn vs. Diversion: An Illustrative

Model,” Economica, 2016, 83 (332), 564–583.

Conlon, Christopher and Julie Mortimer, “Empirical Properties of Diversion

Ratios,” RAND Journal of Economics, 2021, 52 (4), 693–726.

Dranove, David, “U.S., et al. v. Anthem, Inc, and Cigna Corp. Plainti↵’s Exhibit

PDX005,” 2016. https://www.justice.gov/atr/page/file/914606/download.

, Dov Rothman, and David Toniatti, “Up or Down? The Price E↵ects of

Mergers of Intermediaries,” Antitrust Law Journal, 2019, 82 (2), 643–677.

Dube, Jean-Pierre, Gunter J. Hitcsch, and Peter E. Rossi, “Do Switching

Costs Make Markets Less Competitive?,” Journal of Marketing Research, 2009,

46, 435–445.

Farrell, Joseph and Carl Shapiro, “Antitrust Evaluation of Horizontal Merg-

ers: An Economic Alternative to Market Definition,” B.E. Journal of Theoretical

Economics, 2010, 10, 1–39.

Goldberg, Pinelopi Koujianou, “Product Di↵erentiation and Oligopoly in In-

ternational Markets: The Case of the U.S. Automobile Industry,” Econometrica,

1995, 63 (4), 891–951.

Ja↵e, Sonia and E. Glen Weyl, “The First Order Approach to Merger Analysis,”

American Economic Journal: Microeconomics, 2013, 5 (4), 188–218.

Manski, Charles F., Partial Identification of Probability Distributions, Springer

31

https://www.justice.gov/atr/page/file/914606/download


Science & Business Media, May 2003.

, Identification for Prediction and Decision, Harvard University Press, June 2009.

Miller, Nathan H., Marc Remer, Conor Ryan, and Gloria Sheu, “Upward

Pricing Pressure as a Predictor of Merger Price E↵ects,” International Journal of

Industrial Organization, 2017, 52 (4), 683–709.

Raval, Devesh and Ted Rosenbaum, “Why Do Previous Choices Matter for

Hospital Demand? Decomposing Swithing Costs from Unobserved Preferences,”

The Review of Economics and Statistics, 2018, 100, 906–915.

Shepard, Mark, “Hospital Network Competition and Adverse Selection: Evidence

from the Massachusetts Health Insurance Exchange,” American Economic Review,

2022, 112, 578–615.

Sheu, Gloria and Charles Taragin, “Simulating Mergers in a Vertical Supply

Chain with Bargaining,” The RAND Journal of Economics, 2021, 52 (3), 596–

632.

Werden, Gregory J., “A Robust Test for Consumer Welfare Enhancing Mergers

Among Sellers of Di↵erentiated Products,” Journal of Industrial Economics, 1996,

44 (4), 409–413.

32



Appendix

A Bounds for Nested Logit

Suppose product j is in nest g. Let sj,t(A) denote the probability of switching from

product A to j, s̄j|g,t(A) denote product j’s within nest g probability, and s̄g,t(A) be

the nest g probability, where both s̄j|g,t(A) and s̄g,t(A) are conditional on being a

consumer who had chosen A in period t� 1. The probability sj,t(k) is

sj,t(A) = s̄j|g,t(A)s̄g,t(A), (A.1)

where

s̄j|g,t(A) =
exp((�j,t � ⌘j,A)/(1� �))P
j2g exp((�j,t � ⌘j,A)/(1� �))

and (A.2)

s̄g,t(A) =

⇣P
j2g exp((�j,t � ⌘j,A)/(1� �))

⌘(1��)

P
g2G

⇣P
j2g exp((�j,t � ⌘j,A)/(1� �))

⌘(1��)
. (A.3)

The derivatives of sj,t(A) with respect to the mean utility are

@sj,t(A)

@�j
=

1

1� �
sj,t(A)(1� �s̄j|g,t(A)� (1� �)sj,t(A)), (A.4)

@sj,t(A)

@�k
=

�1

1� �
sj,t(A)(�s̄k|g,t(A) + (1� �)sk,t(A)) when j and k are in nest g, and (A.5)

@sj,t(A)

@�k
= �sk,t(A)sj,t(A) when j is in nest g, but k is not in g. (A.6)

Suppose products A and B are in nest g. The diversion ratio is

DA,B,t(�) =

P
j2J

1

1��sA,t(j)(�s̄B|g,t(j) + (1� �)sB,t(j))sj,t�1P
j2J

1

1��sA,t(j)(1� �s̄A|g,t(j)� (1� �)sA,t(j))sj,t�1

=

P
j2J sA,t(j)(�s̄B|g,t(j) + (1� �)sB,t(j))sj,t�1P

j2J sA,t(j)(1� �s̄A|g,t(j)� (1� �)sA,t(j))sj,t�1

.
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It is easy to show that

DA,B,t(0)  DA,B,t(�)  DA,B,t(1), (A.7)

where DA,B,t(0) is equivalent to equation (15) in the main text. Therefore, the same

lower bound also applies to the nested logit diversion ratio, provided that products

A and B are in the same nest.

B Anthen Cigna Win/Loss Data

We assume that the expert used the conventional method to derive diversion ratios

based on win/loss data. Specifically, the diversion ratios implied by the loss data are

DLoss

C,A =
sA|C,t

1� sC|C,t
= 61%

DLoss

A,C =
sC|A,t

1� sA|A,t
= 18%

and the diversion ratios implied by the win data are

DWin

C,A =
P (at�1 = A|at = C)

1� P (at�1 = C|at = C)
= 55%

DWin

A,C =
P (at�1 = C|at = A)

1� P (at�1 = A|at = A)
= 35%.

The report does not disclose the number of Anthem and Cigna customers who

chose not to switch. Therefore, we cannot back out the switching probabilities and

the win data shares of the merging parties. We assume sA|A,t = sC|C,t = p(at�1 =

A|at = A) = p(at�1 = C|at = C) = ↵ = 0.1, and vary ↵ as robustness checks. Our

results are robust for ↵ 2 [0, 0.5].
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