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Abstract

Monopolists selling complementary products charge a higher price in a static equilibrium

than a single multiproduct monopolist would, reducing both the industry profits and consumer

surplus. However, firms could instead reach a Pareto improvement by lowering prices to the

single monopolist level. We analyze administrative nationally-representative pricing data of

railroad coal shipping in the U.S. We compare a coal producer that needs to ship from A to

C, with the route passing through B, in two cases: (1) the same railroad owning AB and BC

and (2) different railroads owning AB and BC. We do not find that price in case (2) is higher

than price in case (1), suggesting that the complementary monopolist pricing inefficiency is

absent in this market. For our main analysis, we use a specification consistent with the previous

literature; however, our findings are robust to propensity score blocking and machine learning

algorithms. Finally, we perform a difference-in-differences analysis to gauge the impact of a

merger that made two routes wholly-owned (switched from case 2 to case 1), and these results

are also consistent with our main findings. Our results have implications for vertical mergers,

tragedy of the anticommons, mergers of firms selling complements, and royalty stacking and

patent thickets.
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1 Introduction

One of the oldest issues in economics is the pricing of complements, with formal treatment dating

back to Augustin Cournot’s 1838 treatise (Cournot (1897)). One needs both copper and zinc to

make brass. Suppose that firm A is a monopolist selling copper and firm B is a monopolist selling

zinc to brass producers. Cournot showed that the sum of the prices of A and B is more than what

a monopolist selling the combination would charge. Prices are strategic substitutes, and each firm

has an incentive to raise its price higher than the single-monopolist level, since the other firm has

an incentive to lower its price in response, in a sense, to subsidize the other firm’s price increase.

In the resulting equilibrium, these complementary monopolists are worse for society than a single

monopoly: the prices are higher than a single monopolist charges, hurting both the consumers and

the firms themselves.1

However, there is a clear potential Pareto improvement: the firms could lower prices to the

single-monopolist level. Researchers, for example, Coase (1960), have postulated that, absent

transaction costs, agents with a potential Pareto improvement should be able to arrive at a Pareto

efficient outcome. In our setting, there could be several mechanisms of arriving to a Pareto im-

provement: Schumpeter (1928) suggests, effectively, a collusion between the two monopolists, while

Spulber (2017) shows that a Pareto optimal solution can be achieved through negotiations of mo-

nopolists with producers.

Thus, the question is an empirical one: do the firms act as static complementary monopolists

and arrive at a Pareto suboptimal outcome, as predicted by Cournot, or do they figure out a way

not to leave money on the table, as predicted by Coase and other researchers?2 We analyze this

question in the context of the U.S. freight railroads shipping coal. Controlling for the relevant route

characteristics, we do not find that the price of shipping through two firms is higher than the price

of shipping through one. Thus, we argue that in the case of the U.S. freight railroads shipping coal,

the Coasian prediction fits the data better. From the historical perspective, it is notable that in

1839 – a year after Cournot published his work in France – Charles Ellet, an American engineer,

published an analysis of railroad pricing in the United States, using similar calculus-based methods

and making many points similar to Cournot’s 1838 work, see Calsoyas (1950) for a review.

Aside from other applications, our results should be of interest for the railroad industry: coal,

together with intermodal freight, are the two largest rail commodities by revenue, with coal ac-

counting for about 17% of freight railroads’ revenue in 2015, see Association of American Railroads

(2016). Conversely, about 70% of coal is shipped via freight rail. Our results suggest that an

end-to-end railroad merger would not be needed to fix a Cournot or double-marginalization-like

pricing issue.3

1Sonnenschein (1968) formalized Cournot’s arguments and showed that Cournot duopoly is the dual of this
complementary monopoly.

2We refer to this possibility of Coasian prediction as a shorthand, without trying to disentangle whether the
underlying mechanism is closer to the one suggested by Schumpeter (1928) or the one suggested by Spulber (2017).

3Nonetheless, we do not analyze other, more traditional merger efficiencies, and thus do not address the question
of whether a vertical railroad merger could indeed result in lower prices to consumers for reasons of other efficiencies
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We describe other applications below, including royalty stacking in intellectual property, vertical

double marginalization (and mergers), and the tragedy of the anticommons. We also describe our

method and why we believe that the railroad data set presents a unique opportunity to study this

question.

While making brass is important, arguably the most contested recent application of this analysis

is in the area of intellectual property. Hundreds of different complementary patents might be needed

to make a modern device, for example a cell phone. The concepts of royalty stacking or patent

thickets (see Shapiro (2001) and Lemley and Shapiro (2006)), are effectively Cournot’s analysis

applied to intellectual property. The policy implications are clear: having many different patent

holders that are all needed to make a product would result in an inefficient outcome with individual

patent license rates (prices) that are too high. Other researchers, soon after, suggested that there are

mechanisms in the market that prevent this Pareto-inefficient outcome (see, for example, Geradin,

Layne-Farrar, and Padilla (2007), Elhauge (2008), and Sidak (2008)). Even more relevant to

our paper, see Spulber (2016) and Spulber (2017) for formal models of how bargaining between

complementary input monopolists and producers can lead to avoidance of the inefficient Cournot

outcome.

We discuss below some of the empirical research relating to patents and royalty stacking; how-

ever, the common thread is significant data limitations. In short, there is no representative database

where one could observe royalties that each manufacturer pays to each patent holder, as these

negotiations are highly confidential and situation-specific (see Hagiu and Yoffie (2013)). Even non-

representative databases are non-existent as far as we know.4 Thus, the existing empirical research

had to rely on secondary indicators, for example the size of the patent portfolio, the proclivity to

patent, and the firms’ market value.

In contrast, we use years of nationally-representative administrative data on pricing of railroad

freight, allowing a direct test of the theory. Consider a shipper that wants to transport goods from

A to C, a route that passes through B. We estimate whether the price paid from A to C is the

same when the same railroad owns both AB and BC tracks as it is when one railroad owns AB and

another owns BC. We estimate difference in prices by comparing otherwise similar routes, with the

difference being whether the route is wholly-owned. We control for available characteristics of the

route, including competitiveness of the railroads, and use a comparatively homogeneous product –

coal.

For identification, we believe that our treatment variable – whether a route is wholly-owned by

the same railroad – is nearly as good as random conditional on observables. The specific junctions –

points where railroads meet – are outcomes of factors that often date back to the mid 19th century

when railroads in the U.S. were expanding. Those factors determined which railroad had the

resources to extend its tracks further, and thus whether a particular route ended up wholly-owned.

While coal was, and continues to be, an important commodity for railroads, the locations where coal

such as economies of scope. For such analysis see Ivaldi and Mccullough (2010).
4A notable exception is some historical data on patent pools, for example, see Lampe and Moser (2010) and Lampe

and Moser (2013) analyzing 19th century patent pools for sewing machine patents.
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is mined have changed dramatically since the 19th century. In particular, while currently Wyoming

produces around half of the coal in the U.S., in the 19th century the leader was Pennsylvania, with

virtually no production in Wyoming. The current coal production in Pennsylvania is around one

tenth of that in Wyoming. A potential weak point in this position is that endogenous mergers since

that time have greatly changed the ownership patterns of once separate rail lines; however, we do

not believe that Cournot-like inefficiencies related to coal transportation were among the important

drivers of these mergers.

In addition to our main specification – a fixed effects pricing regression that was used in several

existing studies both by academics and by regulators – we use other methods to check whether

our results are robust. As one alternative, we use machine learning methods, as outlined by

Belloni and Chernozhukov (2013), Belloni, Chernozhukov, and Hansen (2014), and Chernozhukov,

Chetverikov, Demirer, Duflo, Hansen, et al. (2016). The machine learning approach provides a way

to check the robustness of our results without relying on the exact functional specification used

in our main analysis. As another alternative, we construct propensity scores for the treatment,

split observations in smaller blocks based on propensity scores, run the same regression as in

the fixed effects specification within each block, and then analyze the weighted average of the

resulting coefficients. The method is described in Imbens and Rubin (2015), who recommend

this method over other propensity score techniques (for example, propensity score matching) or a

simple OLS regression. Both the machine learning analysis and regressions in the propensity score

blocks alleviate potential concerns over the exact functional form in the main analysis and variable

selection.

In addition to several methodological approaches producing the same answer, we also provide

an identification robustness check by using a difference-in-differences approach to analyze prices

following a merger that made two routes wholly-owned. To the extent that the premerger behavior

was Cournot, a merger should decrease the price for traffic carried over the newly wholly-owned

route. Also, given that this was a merger of two major railroads, but only two routes were affected,

it is doubtful that the merger was undertaken specifically to change prices on these two routes. We

also could not find any references to these routes in news stories around the time of the merger. Any,

even in our view implausible, concerns with the identification strategy above should be alleviated

by this analysis. While our estimate for this merger analysis is not as precise, our results are

consistent with the main specification.

This theoretical analysis had been applied in many other settings. Vertical double marginaliza-

tion – a monopolist manufacturer selling through a monopolist retailer – is one of the main examples,

e.g., Spengler (1950). Vertical mergers and mergers of firms producing complementary products are

generally viewed considerably more benign than horizontal (substitutes) mergers, in part because of

this very idea being that such a merger might alleviate the double marginalization/complementary

monopoly concern.5 Complementary monopolies have also received plenty of attention from the

5This branch of the literature is also related to foreclosure and tying. See, for example, Posner (1979), Moresi and
Salop (2013), and Tirole et al. (2015); see also Burton and Wilson (2006) on vertical exclusion in rail markets. For a
discussion of mergers of firms producing complements, see Anderson, Loertscher, and Schneider (2010).
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strategy literature, with a prominent example of Microsoft (Windows) and Intel in the 1990s and

2000s producing complementary inputs to a personal computer, see Casadesus-Masanell and Yoffie

(2007) and Casadesus-Masanell, Nalebuff, and Yoffie (2012).

Similar discussions of whether inefficiency survives market forces appear in other settings as

well. For example, in the vertical setting, a solution to this problem is well-known: a manufacturer

could offer a two-part tariff, see Oi (1971). At least some of the empirical literature seems to

agree that this is occurring in retail (Villas-Boas (2007)), although there are severe data limitations

in that stream of research as well, due to the manufacturers’ marginal cost not being directly

observed. For more recent empirical work, see Crawford, Lee, Whinston, and Yurukoglu (2015) for

multichannel television markets, Gayle (2013) for airline markets, and references therein.6

The same question appears in the literature on the tragedy of the anticommons, see, for example,

Heller (1998), Heller and Eisenberg (1998), and Buchanan and Yoon (2000), with some of the work

being specifically about patents. This literature also struggles with the Cournot-like issues of many

owners of, to use an analogy from property law, various sticks of property rights for the same

property, where someone needs to get everyone’s approval to get anything done. Similarly, the

literature also mentions the Coasian possibility of negotiating to an efficient outcome.

There are multiple empirical studies of patents that try to shed light on this issue, and on the

effect of patents on innovation in general, for example, see Murray and Stern (2007), Cockburn

and MacGarvie (2009), Gupta (2014), Cohen, Gurun, and Kominers (2015), Kiebzak, Rafert, and

Tucker (2016), and Hegde and Luo (2017).7 Between these studies, one can find estimates that

would support either conclusion. However, as noted above, none of the estimates that we are aware

of have pricing data to test the theory directly.

The intellectual property literature on royalty stacking influenced the ideas of fair and reasonable

non-discriminatory (FRAND) license terms and the discussion on patent assertion entities (PAEs,

also sometimes referred to as patent trolls) and patent pools. See Chiao, Lerner, and Tirole (2007),

Layne-Farrar, Padilla, and Schmalensee (2007), and Lemley (2007). Theoretical literature and

models continued to develop, again pointing to an empirical question of whether the resulting

equilibrium is closer to the work of Cournot or to the work of Coase, see for example, Llanes and

Trento (2012), Lemley and Shapiro (2013), Lerner and Tirole (2015), Rey and Salant (2012), and

Spulber (2013).

2 Data

Our data – the Waybill Sample – come from the U.S. Surface Transportation Board (STB), the

regulator of freight railroads in the U.S. There exists a version of the Sample for public use; however,

that version has much information aggregated or otherwise masked for competitive reasons. Since

6In particular, see Brueckner (2003) and Bamberger, Carlton, and Neumann (2004) showing that the effects in
the airline industry might be different than those that we are finding in the railroad industry.

7See also review articles, for example Boldrin and Levine (2013), Graham and Vishnubhakat (2013), and Khan
and Sokoloff (2001).
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this would not be as helpful for the purposes of our analysis, we went through a procedure outlined

in 49 C.F.R. 1244.9(c)(1) to request the full sample for research use. The procedure is somewhat

similar to a FOIA process that might be familiar to many researchers. The main difference is that

the information request has to be published in the Federal Register, and any interested parties

can comment on the request. In order to limit any competitive concerns or concerns regarding the

impact of our findings on current railroad practices, we requested the data only up to and including

2003. As noted above, our identification robustness check is a merger; however there were no major

mergers since 2003 (for that matter since 1999), thus we did not believe that the more current years

would have been particularly helpful.

The sample includes a multitude of railroads. However, from 2001 to 2003 – the years that we

use in our main analysis – there are four major railroads that comprise of about 80% of the overall

volume. We use only these railroads in our main analysis. We use only the last three years because

previous years had several mergers that could have affected prices in many ways. We discuss these

mergers below and use one of them as a robustness check for our estimates.

The sample is weighted by the STB to ensure national representation. A datapoint is a shipment.

For that shipment we observe railroad(s) providing the service, origination point, termination point,

any junctions where the shipment changed railroads, total price charged, the distance of the route,

the weight of the shipment, the commodity shipped, and well over a hundred other characteristics.

The industry standard for measuring price is RPTM – revenue per ton mile. Upon computing

RPTM we found considerable variation. In order to eliminate any potential confounding effects,

we focus on the most homogeneous commodity that is frequently shipped by rail – coal (STCC

code 1121290). Up until the explosion of intermodal freight (standard-size containers that can be

stacked on ships, rail, or trucks), coal was the commodity contributing the most revenue to freight

railroads. After we focus on coal, the outliers in the RPTM were not as far from the rest of the

distribution as in the whole sample, however, we still observed occasional shipments with RPTM

of more than 100 times the median. We eliminate the top 5% and the bottom 5% of RPTM data

from our sample. Eliminating the top and the bottom 1% does not change our results qualitatively.

The variables in Table 1 are the same variables as we use in our analyses below. The variables

are log of the distance of the route, log of total weight of this shipment, log of weight per loaded

railcar, volume on that route (to account for possible economies of scale/scope), whether the shipper

owns the rail car, HHI at the origin of the shipment, HHI at the destination (both HHIs at the

county level), a binary variable indicating whether the railroad is a monopolist at the origin, same

variable for the destination, the log of the shipment-specific variable cost, and whether the rate

is masked in the public sample.8 Note that the variable indicating whether the rate is masked

(CalcRate) is, effectively, also the variable indicating that there was negotiation over the rate, and

allowing us to control for any potential selection.

8As for almost any cost measurement, there is a debate whether the cost measured is actually a marginal cost,
see Wilson and Wolak (2016) arguing that it is not. We simply use this as a noisy proxy for the actual cost, and do
not take a stand on whether this is the proper cost to use for any regulatory reasons.
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Table 1: Summary statistics.

Mean p25 Median p75

lnRPTM -4.002 -4.676 -4.069 -3.478
Treatment 0.0805 0 0 0
lnMiles 6.143 5.733 6.415 6.980
lnTons 9.156 9.200 9.456 9.569
lnTonsCar 4.702 4.635 4.723 4.777
lnVolTons 14.432 13.485 14.650 15.592
DOwn 0.637 0 1 1
HHIorigin 0.706 0.501 0.505 1
HHIterm 0.905 .927 1 1
DMorigin 0.315 0 0 1
DMterm 0.585 0 1 1
lnCosts 10.734 10.206 11.117 11.572
CalcRate 0.604 0 1 1

3 Main analysis

Our estimation strategy is as follows. Consider a shipper that wants to ship coal from A to C,

a route that passes through B. We estimate whether the price (RPTM) paid from A to C is the

same when the same railroad owns both AB and BC tracks as it is when one railroad owns AB and

another owns BC. We estimate difference in prices by comparing otherwise similar routes, with the

difference being whether the route is wholly-owned.

We use a pricing specification used by previous railroad-specific research to get our estimates.

The specification, effectively a hedonic pricing regression, was used by Christensen Associates (2010)

in a report prepared for the STB – in other words a report by a specialized consulting firm, with

the industry’s regulator as the customer. The report tweaks a previously existing specification from

the academic literature, Mac Donald (1989), with the article looking at an unrelated deregulatory

question. In addition to the exact specification used in the report for the STB, we also include

shipment-specific costs that have a highly significant coefficient.9 We do not use proximity of water

ports that the report used – it is not statistically significant in our estimates and does not change

the estimate of interest regardless of whether it is included.

We also include the treatment variable that we are interested in – whether the shipment is

served by two railroads or by one. None of the shipments that we observe are served by more than

two railroads.

A particular industry practice somewhat complicates our analysis. The railroads are permitted

to rebill shipments that are served by two railroads. In other words, we often observe a shipment

9The cost variable inherently has a significant measurement error, since measuring marginal costs is typically a
hard problem in a specific case, let alone across industry for all shipments. However, given that we are utilizing a
hedonic pricing regression, are not interested in the coefficient on the cost variable in and of itself, and expect that
costs matter for pricing, we felt that we should include this variable. If the measurement error is overwhelming, then
we should get a not statistically significant coefficient. We assume that the measurement error in marginal costs is
not correlated with our coefficient of interest.
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served by one railroad with the flag indicating that it was rebilled: instead of observing route AC,

showing that AB was served by railroad 1 and BC was served by railroad 2, we see AB served

by railroad 1 with a rebilling flag. There are considerably more rebills in the data than there are

routes with junctions. If we were to have the universe of shipments, as opposed to a sample, we

could have connected the missing pieces since BC served by railroad 2 with a rebilling flag would

have also been in our sample. However, this type of a match is not possible given that we only

have a sample. Thus, our treatment variable is 1 if we observe either a junction or a rebill. It is 0

otherwise.10

Thus, our specification is

lnRPTM = βinteresttreatment+

+ β × [lnMiles+ lnTons+ lnTonsCar + lnV olTons+DOwn+HHIorigin +HHIterm

+DMorigin +DMterm + lnCosts+ CalcRate] + FEorigin + FEterm

+ FErailroadorigin + FErailroadterm + FEquarter.

(1)

In addition to the variables described above, we also include fixed effects for origin, termination

point, railroad serving the origin, railroad serving the termination point (different if there is a

junction), and quarter-year (for example, Q1 of 2001). We cluster our standard errors at the level

of origin-termination-quarter-year.

We present the estimation results in Table 2. We estimate seven models in total. First, we

estimate equation (1) on the whole sample without fixed effects. These results are presented in

column (1). Next, we estimate the same model with fixed effects. The results are shown in column

(2). Because our results can be affected by the extreme values of the dependent variable, we

re-estimate models (1) and (2) on the sample that excludes top and bottom 1% of the PRTM

distribution and on the sample that excludes top and bottom 5% of the PRTM distribution. These

results are presented in columns (3)-(6), respectively. Finally, we eliminate top and bottom 5% of

the RPTM distribution and observations with missing rebill variable11 and re-estimate equation

(1). These results are presented in column (7).

The results are very consistent across all models. The effect of treatment is economically

small and statistically insignificant. The coefficients of other covariates are also pretty consistent

across the models, except the weight per loaded railcar, HHI at origin and termination point, and

indicators of monopoly at origin and termination points.

While the estimates of the treatment effect are consistent across the models, one might worry

that the results might be affected by trimming the sample and excluding treated observations

with high revenue per ton mile. Therefore, we present the number of excluded observations by

10This measurement issue was also noted by McCullough and Thompson (2013).
11The rebill variable is poorly recorded in years 2001 and 2002 with 40% of observations missing. Starting 2003

the reporting of this variable has significantly improved and there are no missing values of rebill in 2003. While,
there are many observations missing in the earlier years, it seems that most of them migrated in ’no rebill’ category
in 2003 – the percentage of observations in ’no rebill’ category increased from 60% to 85%. While the percentage of
observations in ’rebill’ category increased from 0.4 percent to 15 %.
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treatment group in Table 3. The number of treated observations in top 1% and top 5% of the

RPTM distribution is very small – 2 and 21 observations, respectively.

Table 2: Effect of either a junction or a rebill on price

(1) (2) (3) (4) (5) (6) (7) (8)

lnRPTM lnRPTM lnRPTM lnRPTM lnRPTM lnRPTM lnRPTM RPTM

Whole Whole Trim at 1 % Trim at 1 % Trim at 5% Trim at 5% Trim at 5% Trim at 5%

exclude exclude

missing rebill missing rebill

Treatment -0.007 -0.013 0.001 -0.014 0.004 -0.006 -0.002 0.0002

(0.023) (0.008) (0.023) (0.008) (0.024) (0.008) (0.009) (0.0002)

lnMiles -0.766∗∗∗ -0.919∗∗∗ -0.775∗∗∗ -0.829∗∗∗ -0.833∗∗∗ -0.779∗∗∗ -0.726∗∗∗ -0.019∗∗∗

(0.023) (0.024) (0.024) (0.021) (0.028) (0.022) (0.023) (0.001)

lnTons -0.344∗∗∗ -0.174∗∗∗ -0.373∗∗∗ -0.180∗∗∗ -0.460∗∗∗ -0.174∗∗∗ -0.131∗∗∗ -0.001∗∗

(0.028) (0.026) (0.028) (0.018) (0.030) (0.016) (0.017) (0.0002)

lnTonscar -0.432∗∗∗ -0.303∗∗∗ -0.290∗∗∗ -0.063 -0.221∗∗ -0.041 -0.126∗ -0.004∗∗∗

(0.076) (0.089) (0.077) (0.045) (0.082) (0.039) (0.054) (0.001)

lnVoltons -0.072∗∗∗ -0.038∗∗∗ -0.077∗∗∗ -0.031∗∗∗ -0.069∗∗∗ -0.026∗∗∗ -0.025∗∗∗ -0.001∗∗∗

(0.004) (0.004) (0.004) (0.003) (0.004) (0.002) (0.002) (0.000)

DOwn -0.081∗∗∗ -0.020∗∗ -0.082∗∗∗ -0.025∗∗∗ -0.059∗∗∗ -0.028∗∗∗ -0.045∗∗∗ -0.002∗∗∗

(0.010) (0.007) (0.010) (0.006) (0.010) (0.005) (0.006) (0.0001)

HHIorigin 0.354∗∗∗ -0.179∗ 0.373∗∗∗ -0.132 0.387∗∗∗ -0.102 -0.194∗∗ -0.007∗∗∗

(0.043) (0.075) (0.042) (0.070) (0.042) (0.060) (0.064) (0.003)

HHIterm 0.063 0.042 0.036 0.049 0.076∗ 0.092 0.107 0.002

(0.034) (0.069) (0.032) (0.069) (0.030) (0.066) (0.071) (0.001)

DMorigin -0.047∗ 0.005 -0.061∗∗ 0.003 -0.057∗∗ 0.007 0.022∗∗∗ 0.001∗∗∗

(0.020) (0.006) (0.019) (0.006) (0.019) (0.006) (0.006) (0.0002)

DMterm 0.099∗∗∗ -0.004 0.102∗∗∗ -0.001 0.077∗∗∗ 0.002 -0.003 0.00002

(0.014) (0.007) (0.013) (0.006) (0.011) (0.006) (0.007) (0.0001)

lnCosts 0.370∗∗∗ 0.165∗∗∗ 0.406∗∗∗ 0.174∗∗∗ 0.500∗∗∗ 0.167∗∗∗ 0.122∗∗∗

(0.033) (0.030) (0.033) (0.021) (0.035) (0.019) (0.020)

Costs -0.000∗∗

(0.000)

CalcRate -0.024∗∗ -0.047∗∗∗ -0.031∗∗∗ -0.047∗∗∗ -0.025∗∗ -0.046∗∗∗ -0.051∗∗∗ -0.001∗∗∗

(0.009) (0.004) (0.009) (0.004) (0.009) (0.004) (0.004) (0.000)

Fixed Effects – – –

N 78,629 78,569 77,057 77,007 70,769 70,728 52,447 52,447

Adj. R2 0.86 0.96 0.86 0.97 0.83 0.96 0.97 0.96

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

All models with fixed effects include fixed effects for country of origin, destination county, railroad serving

the origin, railroad serving the termination point, and quarter-year.

Standard errors are clustered by country of origin, destination county, and quarter-year.

As in any hedonic regression, the coefficients should not be interpreted as causal. In particular,

the coefficients on HHI are not causal – HHI is endogenous, and we do not use a valid instrument
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Table 3: PRTM Extreme Values by Treatment Group

Top 1% Bottom 1% Top 5% Bottom 5%

Controls 784 564 3,910 3,2345
Treated 2 222 21 686

All 786 786 3,931 3,931

to address this endogeneity problem. Nonetheless, the coefficients on our control variables are

generally of the expected sign, statistically significant, and broadly similar to those obtained by

both Mac Donald (1989) and Christensen Associates (2010). In particular, the economies associated

with longer hauls (Miles), larger shipments (Tons), larger loads per car (Tonscar), and higher annual

volumes on the route (Voltons) are all reflected in negative and statistically significant coefficients

in almost all specifications. In terms of magnitudes, our estimated coefficients are closer to those

of the previous studies for Miles and Voltons, not as close for Tons and Tonscar; however, as

Christensen Associates (2010) point out, these latter two variables are not independent of each

other, so that their separated coefficients must be interpreted with greater caution.

Like Christensen Associates (2010) but unlike Mac Donald (1989), we observe unstable and

often counterintuitive signs on the coefficients for competition at origin (especially) and destination

points. Christensen Associates conjecture that a positive coefficient on the number of railroads

serving the origin may reflect competition in aspects of service quality that are unobservable in the

waybill data.

4 Methodological robustness checks

4.1 Propensity score blocking

We follow Imbens and Rubin (2015) and estimate causal effect based on subclassification (blocking)

on the estimated propensity score. First, we estimate the propensity score, or probability of being

treated, as a function of the variables available in the Waybill sample. Next, we partition the

sample into blocks based on the values of the estimated propensity score, so that within a block,

the estimated propensity scores are approximately the same. Then, within each block, we estimate

causal effect using the fixed effects regression outlined earlier. Finally, the average treatment effect

for the whole sample is calculated as an average of the within-block estimated treatment effects

weighted by block sizes.

Imbens and Rubin (2015) show that within blocks with the same estimated propensity score,

the super-population distribution of covariates is identical in the treated and control groups. This

property of the propensity score implies that splitting sample into blocks with approximately con-

stant propensity score eliminates systematic biases associated with differences in observed covariates

between treated and control groups, and thus leads to more precise estimates. However, blocking

alone typically does not eliminate all biases that arise because of the differences in the covariates

between control and treatment groups, because often even when data are split into smaller groups

10



the estimated propensity score is not constant within blocks. Therefore, we run a regression to

estimate the effect within each block to further reduce bias of estimates.

The key in the blocking approach is to construct comparable control and treatment groups

within each block. Therefore, the first step is to refine the sample and eliminate outliers in the

same way as in the previous section – we eliminate observations in the 5 bottom and 5 top percent

of the RPTM distribution. Additionally, we identify counties with all originating/terminating

shipments in either control or treatment group and eliminate shipments that originate/terminate

in such counties. Ideally, we would use county dummies in our propensity score regression; however,

there are over a thousand of such dummies, and doing this is not practical. Eliminating counties

that perfectly predict treatment is effectively doing what a logit propensity score would do if we

could run the estimation with all the county dummies.

Finally, we eliminate all shipments for which rebilling flag variable is missing. Initial sample

includes 72,300 control group observations and 6,331 treatment group observations. We discard

61,588 observations in total, the vast majority of which is due to the perfect predictor counties

mentioned above. The final sample includes 16,043 observations, among them 12,860 observations

are in the control group (18% of the original control group) and 3,183 are in the treatment group

(66% of the original treatment group).12

Next, we estimate the propensity score using the following logit specification:

Treatment = γ × [lnMiles+ lnTons+ lnTonsCar + lnV olTons+DOwn+HHIorigin +HHIterm

+DMorigin +DMterm + lnCosts+ CalcRate+ Share treatedorigin + Share treatedterm]

+ FErailroadorigin + FErailroadterm + FEquarter.

(2)

The control variables are as in equation (1); additionally, Share treatedorigin is a share of shipments

served by more than one railroad originating in a county of shipment origin, and Share treatedterm

is a share of shipments served by more than one railroad terminating in a county of shipment

final destination (this variable serves as another proxy for having county-level dummies in the

specification). The results of this estimation are shown in Table A2.

Next, we discard observations with the estimated propensity score too close to zero or one

to eliminate units from either control or treatment group that do not a have good counterpart

in treatment or control group, respectively. Specifically, we drop observations with propensity

scores above 0.9375 and below 0.0269. The top threshold cuts off the top 0.25% of the untreated

observations and about 24% of the treated. The bottom threshold cuts off about 4% of the treated

observations and about 60% of the untreated. Clearly, the data above the top threshold is highly

skewed towards being treated and the data below the bottom threshold is highly skewed towards

12As Imbens and Rubin (2015) argue, this approach sacrifices some external validity – the final estimates of the
average treatment effect for the trimmed sample are less likely to be valid for the original sample. However, the
advantage of this approach is the internal validity, i.e., the estimates of the treatment effect for the trimmed sample
are more accurate than the estimates of the average treatment effect in the original sample.
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being untreated. Table 4 displays the subsample sizes by treatment group and propensity score

value.

Table 4: Sample Sizes for Trimming Based on Estimated Propensity Score

ê(Xi) < 0.0269 0.0269 < ê(Xi) < 0.9375 ê(Xi) > 0.9375

Controls 7,716 5,112 32
Treated 164 3,027 992

All 7,880 8,139 1,024

Next, we split the sample into twenty blocks. Table A1 shows the details for these twenty blocks

including the cut off values for the propensity score, the number of units by treatment status in

each group, and the standardized differences in control variables and propensity scores for the whole

trimmed sample and within each block.13 The idea is to keep splitting the blocks until either the

covariates look balanced or until there aren’t enough treated or untreated observations relative to

the number of controls in the regression that we run inside each block. Our regression specification

has over a dozen of observables and even more fixed effects, thus we do not split blocks further if we

have 30 or fewer treated or 30 or fewer untreated observations. Each individual block is much more

balanced comparing to the whole sample – the normalized differences between covariates are much

smaller within the blocks than in the whole sample. Finally, we estimate treatment effect within

each block using model specified in equation (1). As we show in Table A1 in the Appendix, there

is sufficient difference in the covariate distributions within the blocks and thus regression helps to

further adjust for these differences.

We present results for the parameter estimates from the regressions for the twenty blocks in

Table 5. The overall average treatment effect (ATE) is calculated in the following way:

ATE =
∑
j

qj × τ̂(j), (3)

where j = 1, ..., 20 corresponds to the block number; q(j) = N(j)/N , where N(j) is the number of

observations in block j and N is the total number of observations in the sample; finally, τ̂(j) is the

within-block least squares estimate of the treatment effect for block j.

The variance of the overall ATE is calculated in the similar manner:

V (ATE) =
∑
j

q2j × V̂ (τ̂(j)), (4)

where V̂ (τ̂(j)) is the estimated variance of the treatment effect within block j.

The results indicate that the ATE equals -0.05 with the standard deviation of 0.02, which

13The standardized difference between two samples for a variable is calculated using the following formula, e.g., for
lnMiles:

z =
lnMilestreated − lnMilescontrol√
s2treated/Ntreated + s2control/Ncontrol
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confirms our main results that shipments served by several railroads are not higher priced than

shipments served by one railroad. The magnitude of the coefficient is small in the absolute value,

and is close to the coefficient that we obtain in the main specification.

Table 5: Independent Least Squares Regressions within Blocks
Block N Est. S.E.

1 2,069 0.06 0.04
2 1,201 0.00 0.01
3 358 -0.09 0.03
4 151 0.05 0.04
5 455 0.01 0.02
6 90 0.01 0.01
7 255 0.00 0.02
8 251 -0.23 0.03
9 58 -0.14 0.07
10 118 0.00 0.00
11 78 0.40 0.05
12 78 0.10 0.08
13 97 -0.02 0.11
14 147 -0.30 0.06
15 120 -0.09 0.08
16 50 0.11 0.04
17 167 0.08 0.07
18 1,088 -0.06 0.06
19 838 -0.40 0.10
20 314 -0.01 0.02

ATE -0.05* 0.02
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.2 Double Machine Learning

We refer readers who are not familiar with the standard machine learning techniques, such as

neural nets, to the Appendix. Even though ML estimators cannot be used for causal inference

directly, the estimation techniques that combine regression and machine learning methods are able

to provide valid estimates of causal effects. Specifically, we implement double machine learning

(DML) estimator developed by Chernozhukov et al. (2016). In combination with cross-fitting, the

estimator is efficient and approximately unbiased and normal. The estimation proceeds as follows.

First, we model the outcome variable as the following partially linear model:

Y = Dθ0 + g0(Z) + U, (5)

D = m0(Z) + V, (6)

where E[U |Z,D] = 0 and E[V |Z] = 0. Y is the outcome variable, D is the treatment variable, Z

is a vector of covariates listed in equation (2), and U and V are disturbances. The first equation

is the main equation that we would like to estimate with the parameter of interest θ0. The second

equation keeps track of confounding, or dependence of treatment variable on covariates. A set of

control variables Z impacts outcome variable and treatment variable via the functions g0(Z) and
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m0(Z) respectively.

DML estimator is obtained by partialing out the effect of Z from both Y and D and estimating

the regression model implied by equations (5) - (6):

W = V θ0 + U, (7)

where V = D−m0(Z) and W = Y − l0(Z), where l0(Z) = E[Y |Z] = m0(Z)θ0+g0(Z). We estimate

functions m0 and l0 using neural nets. We chose neural nets because this is one of the machine

learning techniques that is most often used by machine learning researchers due to out-of-sample

predictive success. In addition, when choosing which machine learning method to use, we were

driven by our desire to deal flexibly with any potential nonlinearities and interactions. We believe

that neural nets accomplish this objective better than, for example, post-lasso.

First, we split the data into two equal subsamples – the training sample and the test sample.

Next, we obtain parameter estimates using neural nets and the training sample and construct

estimates of l̂0 and m̂0 using obtained parameters and the test sample. Finally, we use these

estimates to form Ŵ = Y − l̂0(Z) and V̂ = D − m̂0(Z) and then obtain “double” ML estimator:

θ̂0 =
( 1

n

n∑
i=1

V̂ 2
i

)−1 1

n

n∑
i=1

V̂iŴi. (8)

Chernozhukov et al. (2016) prove that this estimator is root-n consistent and approximately

Gaussian under a very mild set of conditions. As Chernozhukov et al. (2017) note, the specific

sample partitioning has no impact on estimation results asymptotically but may be important in

finite samples. In other words, when estimating using a finite sample, the value of the estimator

depends on a specific split of the sample. Hence, to get asymptotically valid estimates, we repeat

estimation procedure S times each time partitioning sample in halves. We then report estimates

that incorporate information from the distribution of the estimates obtained from the different data

partitions. As a result, we report mean estimate based on S obtained estimates of the parameter

of interest:

θ̂Mean
0 =

1

S

S∑
s=1

θ̂s0, (9)

where θ̂s0 is a point estimate obtained in each of S estimations. Finally, we calculate the standard

error of the θ̂mean0 that incorporates additional variation due to different data splits:

σ̂Mean =

√√√√ 1

S

S∑
s=1

(
σ̂2s + (θ̂s0 − θ̂Mean

0 )2
)
, (10)

where σ̂s = (EV 2)−1EU2V 2(EV 2)−1.

We present the results in Table 6. We trim the top and the bottom 5% of the RPTM distribution

as before. We implement neural net estimator using a 2-fold cross-fitting (splitting sample in halves)
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with 10 hidden layers and a decay parameter of 0.01, which prevents over-fitting.14 We repeat

the main procedure 100 times repartitioning data in each replication. The result is again very

similar to the result in the the main specification. While the results show a statistically significant

negative coefficient, the coefficient is small in absolute terms, thus we do not attempt to explain

the unexpected sign.

Table 6: Effect of either a junction or a rebill on price, double machine learning.

ATE -0.06***
(0.016)

N 70,728

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

5 Identification robustness check: BNSF merger

On December 31st, 1996 two major railroads merged, ATSF and BN, creating the largest railroad in

the U.S. – BNSF. Although the ATSF and BN were primarily parallel rather than interconnecting

railroads – for years they joined the Southern Pacific and Union Pacific as the four major railroads

serving the western US – there were some routes on which they connected to provide end-to-end

service. Cournot analysis, or the presence of double marginalization, would suggest that if any

route went from being served as a connecting route by ATSF and BN to being served by a single

company BNSF, the price on that route should decrease. However, so would economies of scale

or scope coming from the merger. Following previous academic work suggesting that it takes a

couple of years for any economies of scale or scope to materialize, we use years 1995 – 1999 to

test the hypothesis of whether price decreased on previously separately-owned routes following the

merger.15

It turns out that only three coal routes were affected in this way (served by ATSF and BN as

connecting carriers before the merger), all originating in Wyoming. As a part of getting the merger

approved by the STB, BNSF agreed to give trackage rights to another railroad (UP) for one of the

routes. That could, of course, lead to an immediate price drop due to competition on this route

that is now served by both the combined ATSF and, through trackage rights, the UP; thus, we do

not use this route. Therefore, we have two routes left.

We use a difference-in-differences specification mirroring our setup in the main analysis. Thus,

instead of the treatment variable in the main analysis, we have a variable for affected routes,

another variable for post-merger, and finally yet another variable for the interaction (difference-

14We tried different number of hidden layers, from 1 to 12, and the results are very similar to the results we get
with 10 hidden layers. Adding hidden layers marginally improves mean standard error that measures model fit to
the data and significantly increases time of the calculation. The estimate of average treatment effect practically stays
the same.

15See Ivaldi and Mccullough (2010). See also Berndt, Friedlaender, Chiang, and Vellturo (1993).
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in-differences) term. The coefficient of interest is the interaction term. Thus, our specification

is

lnRPTM = βinterestPost×AffectedRoutes+ βpostPost+ βaffectedAffectedRoutes

+ β × [lnMiles+ lnTons+ lnTonsCar + lnV olTons+DOwn+HHIorigin +HHIterm

+DMorigin +DMterm + lnCosts+ CalcRate] + FEorigin + FEterm + FErailroadorigin

+ FErailroadterm + FEquarter.

(11)

The variable names and clustering are the same as in the main analysis. In particular, we use

the same controls and the same fixed effects.16

We are also not sure when exactly the price change would have occurred post-merger if it

indeed occurred. In other words, it might have taken some time for BNSF to synchronize the

pricing systems. Thus, we run specification with the first quarter, first two quarters, and first year

post-merger thrown out. Our coefficient of interest does not change significantly. The results are

in Table 7 and, while noisy, are consistent with the results that we presented earlier.

As with any difference-in-differences analysis, a parallel trend graph helps with convincing our-

selves that we have the correct identification strategy. We present the graph below, with the

graph not corrected for any controls. We demean the RPTM for affected routes to preserve pricing

anonymity. The price drop in the affected routes after month ‘460’ is consistent with the previ-

ous empirical literature that suggested that it takes close to two years for economies of scale to

materialize for railroad mergers.

6 Conclusion

We found that, in the U.S. freight rail, prices for shipping coal are not consistent with a Cournot-like

complementary monopoly outcome. Instead, we find evidence consistent with an equilibrium, where

complementary monopolists on routes AB and BC do not charge more than a single monopolist

would charge if she were to own the whole route AC.

How are the railroad companies able to accomplish this? In discussions with industry experts, we

have learned that coal shipment contracts that involve two interconnecting railroads often include

discussions and negotiations between the railroads concerning both the joint rate and the divisions

of the rate, and that these discussions may be motivated/incentivized by coal customers, such as

power plants soliciting joint rate bids for coal supplies. In such circumstances it seems not at all

surprising that the two railroads seeking to win a joint bid can avoid the double marginalization

characteristic of independent price setting of complements.17

16Note that the term βpostPost is unnecessary given the quarter-year fixed effects. We still have it in the regression
simply to make the point that we are using the standard difference-in-differences setup. The downside is the large
magnitude and no statistical significance on coefficient βpost.

17This anecdotal evidence suggests that the negotiation between monopolists and producers, along the lines of
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Table 7: Effect of merger on price of affected routes
(1) (2) (3) (4)

lnRPTM lnRPTM lnRPTM lnRPTM
(without 1997Q1) (without 1997Q1 & Q2) (without 1997)

Post × 0.00355 0.0125 0.0214 0.00978
Affected Routes (0.0359) (0.0397) (0.0399) (0.0426)

Post -7605.9 -1972.3 1409.2 -242.3
(5118458.0) (2691777.1) (3536224.9) (2711872.8)

Affected Routes -0.239∗ -0.257∗ -0.568∗∗∗ -0.595∗∗∗

(0.114) (0.118) (0.0664) (0.0695)

lnMiles -0.570∗∗∗ -0.571∗∗∗ -0.576∗∗∗ -0.586∗∗∗

(0.0129) (0.0131) (0.0134) (0.0142)

lnTons 0.00953 0.00862 0.00542 -0.00684
(0.00978) (0.0100) (0.0104) (0.0108)

lnTonsCar -0.169∗∗∗ -0.166∗∗∗ -0.162∗∗∗ -0.150∗∗∗

(0.0194) (0.0199) (0.0205) (0.0222)

lnVolTons -0.0203∗∗∗ -0.0197∗∗∗ -0.0191∗∗∗ -0.0189∗∗∗

(0.00204) (0.00209) (0.00210) (0.00217)

DOwn -0.0856∗∗∗ -0.0858∗∗∗ -0.0851∗∗∗ -0.0807∗∗∗

(0.00419) (0.00429) (0.00441) (0.00460)

HHIorigin 0.0348 0.0334 0.0314 0.0265
(0.0213) (0.0224) (0.0228) (0.0246)

HHIterm -0.0461∗ -0.0487∗ -0.0567∗ -0.0456
(0.0191) (0.0206) (0.0221) (0.0267)

DMorigin 0.00524 0.00339 0.00107 -0.00943
(0.00555) (0.00565) (0.00563) (0.00544)

DMterm 0.000639 0.00140 0.00326 0.00430
(0.00504) (0.00520) (0.00534) (0.00596)

lnCosts -0.0444∗∗∗ -0.0429∗∗∗ -0.0389∗∗ -0.0233
(0.0119) (0.0122) (0.0125) (0.0131)

CalcRate -0.183∗∗∗ -0.180∗∗∗ -0.174∗∗∗ -0.163∗∗∗

(0.00566) (0.00577) (0.00584) (0.00595)

N 191,565 183,418 174,784 157,296

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure 1: Pricing trends for affected and unaffected routes, with the merger occurring on December
31st, 1996.

Our results are directly applicable to the U.S. freight railroad market: for example, we show that

an end-to-end railroad merger would not be needed to fix a Cournot or double-marginalization-like

pricing issue in this market. However, one should be cautious when extrapolating from our results

to other settings.

In particular, while railroads and products requiring multiple patents share the potential for

a Cournot-like outcome, there are many important differences. First, products like cell phones

oftentimes require hundreds of patents, instead of any coal company being able to ship using only

two railroads in our setting. It is possible that a much higher number of complementary monopolists

results in a Cournot-like outcome. Second, in the intellectual property realm, at least some of the

often-discussed issues are around unscrupulous entities that use ‘deceptive sales claims and phony

legal threats’ in order to attempt to collect royalties on invalid patents, effectively threatening a

strike suit.18 This is, of course, not possible for railroads to do. Third, while another concern in the

intellectual property realm is that occasionally manufacturers do not even realize that their product

impinges on patents, coal companies know for sure that they will have to use railroads to transport

coal before they open a coal mine. On the other hand, fourth, while many manufacturers are also

patent holders, so that oftentimes patents might be used defensively, freight railroads typically do

not mine coal themselves.

We hope that our study inspires further work in this area, and in particular more direct analyses

of whether the Cournot hypothesis holds in particular markets. Ideally, economists, legal scholars,

and other interested researchers will analyze similar data from the industries and countries where

Spulber (2017), might be a better fit for this market than direct contact between monopolists as in Schumpeter
(1928).

18See, for example, the FTC’s MPHJ settlement, https://www.ftc.gov/news-events/press-releases/2014/11/ftc-
settlement-bars-patent-assertion-entity-using-deceptive.
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such data is available. Then, upon having multiple such studies, we could make educated hypotheses

about more industries and, in particular, the degree to which, if any, the four differences above

change our conclusions.
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A Fitting of Neural Networks

Background on machine learning

Readers familiar with the standard machine learning techniques and intuition can safely skip

this section.

Supervised machine learning is used to build a prediction model that relates a set of inputs X

and an outcome variable Y . Machine learning (ML) in this case is called supervised because the

outcome variable guides the learning process. ML models are designed to optimize prediction, and

therefore are concerned with overfitting and are not explicitly concerned with unbiased estimates.

Consequently, ML is tailored for applications when there are many attributes of a unit relative

to the number of observations and when one wants to allow flexible functional form between the

inputs and an output, e.g., when non-linearity might be hard to capture using conventional reduced

form models.

While ML techniques excel at prediction, they are not necessarily great for causal inference. The

focus of ML methods, prediction and improved prediction, is sometimes achieved by using biased

estimates (for example, by placing zero coefficients on some covariates to simplify the model). The

intuition is explained in Kleinberg et al. (2015) and has to do with variance-bias tradeoff. Suppose

a training dataset T of n data points (xi, yi) is used to pick a function f to predict y using x. Now,

consider a mean squared error at a new point x0, MSE(x0):

MSE(x0) = ET [f(x0)− ŷ0]2

= ET [ŷ0 − ET (ŷ0)]
2 + [ET (ŷ0)− f(x0)]

2

= V arT (ŷ0) +Bias2(ŷ0)

(12)

This bias-variance decomposition of the MSE shows that there is a tradeoff between variance and

bias of the estimate. More generally, as the model complexity increases, the variance tends to

increase and the squared bias tends to decrease.19

Ordinary least squares (OLS) estimate is unbiased under some assumptions. However, unbi-

asedness comes at the cost of higher variance. Gauss-Markov theorem states that the least squares

estimate has the smallest variance among all unbiased linear estimates, but there exist biased esti-

mates with smaller variance. For example, setting to zero some of the least squares estimates might

result in a small bias and a significant reduction in variance and thus a better prediction. ML meth-

ods optimize this balance between bias and variance and therefore while potentially outperforming

OLS in prediction, ML estimates are likely biased.

ML methods select a subset of predictors to produce a model that is interpretable and has

possibly lower prediction error than the full model. In particular, ML techniques minimize:

f̂ML = argmin
f

n∑
i=1

(yi − f(xi))
2 + λR(f), (13)

19See Hastie et al. (2009) pp. 9-42 for more detail.
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where R(f) is a regularizer that penalizes model complexity. λ ≥ 0 is a complexity parameter that

controls the amount of shrinkage (i.e., how many coefficients are shrunk toward zero). The larger

the λ is, the more parsimonious is the model. Regularizer function may take various forms, for

example, for linear models R(fβ) = ‖β‖d, where d = 1 corresponds to the lasso estimator and d = 2

corresponds to the ridge and neural networks estimators (in neural networks λ is known as weight

decay).20

Another important technique used in ML to ensure the quality of prediction is cross-validation.

The data sample is split into training and test sample. First, the model is fitted using the training

sample. Then the performance of the obtained model is tested on the test sample. This procedure

allows to avoid overfitting and derives the optimal level of model complexity.

The ML method that we use in this estimation is neural net. Neural nets have been previously

used in economics and finance literature (e.g., White (1988), Swanson and White (1997), Qi (1999)).

Neural nets consist of a number of simple neuron-like processing units, organized in layers. Every

unit in a layer connected to all the units in a previous layer. These connections are not equal: each

connection may have a different strength or weight. Data enters at the inputs and passes through

the network, layer by layer, until it arrives at the output. Layers between the inputs and an output

are called hidden layers as they are not directly observed (latent). In the network that we use for

our analysis there is no feedback between layers, and thus it is called feed-forward network. Figure

1 shows a network with several inputs, one output, and one hidden layer.

Neural nets can be seen as a two-stage non-linear regression. The hidden units Zm are created

from linear combinations of the inputs, and output variable Yk is modeled as a function of linear

combinations of Zm:

Zm = σ(α0m + α′mX), m = 1, ...,M,

f(X) = β0 + β′Z,
(14)

The activation function σ(v) = 1
1+e−v is known as sigmoid. The unknown parameters in neural

network are called weights: θ = {{α0m, αm : m = 1, 2, ...,M}, {β0, β}}. Weights are found from the

training data by fitting the model.

We use the sum-of-squared errors as a measure of fit:

R(θ) =

N∑
i=1

(yi − f(xi))
2 + λJ(θ), (15)

where J(θ) is a weight decay and

J(θ) =
∑
m

β2m +
∑
ml

α2
ml (16)

The decay parameter penalizes large weights in the neural network and prevents overfitting.

The generic approach is to minimize R(θ) + λJ(θ) by gradient descent described directly below.

20‖β‖1 =
∑k

i=1 |βk|, ‖β‖
2 =

∑k
j=1 β

2
k, where k is the number of controls in a subset chosen by the ML algorithm.
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Figure 2: Neural Net with One Hidden Layer

Gradient descent algorithm

To find the set of weights θ that yield the best prediction in the neural network we minimize

the sum of sum-of-squared errors R(θ) and weight decay J(θ)21

R(θ) + λJ(θ) =
N∑
i=1

(yi − f(xi))
2 + λJ(θ) =

N∑
i=1

(yi − f(xi))
2 + λ(

M∑
m=1

β2m +
M∑
m=1

N∑
l=1

α2
ml).

(17)

Conventionally this function is minimized by gradient descent. Given a function defined by a set

of parameters, gradient descent starts with an initial set of parameter values and iteratively moves

toward a set of parameters that minimize the function. This iterative minimization is achieved by

taking steps in the negative direction of the function gradient. In this case, the gradient is easily

derived using the chain rule:

∂Ri
∂βm

= −2(yi − f(xi))zmi + 2λβm,

∂Ri
∂αml

= −2(yi − f(xi))βmσ
′(αmixi)xil + 2λαml.

(18)

Given these derivatives, the gradient descent update at the (r + 1)st iteration has the form

21This algorithm is thoroughly described in Hastie et al. (2009), pp. 395-396.
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β(r+1)
m = β(r)m − γr

N∑
i=1

∂Ri

∂β
(r)
m

,

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=1

∂Ri

∂α
(r)
ml

,

(19)

where γ is called a learning rate.

Now, equation (18) can be rewritten as

∂Ri
∂βm

= δizmi,

∂Ri
∂αml

= smixil,

(20)

The quantities δi and smi are called “errors” from the current model at the output and hidden

layers, respectively. From equations (18) and (20)

smi = σ′(αTmxi)βmδi, (21)

which is known as a back-propagation equations. Then the gradient in (19) is updated using a two-

pass algorithm. First, in the forward pass, the current weights are fixed and the predicted values

f̂(xi) are computed using equation (14). Next in the backward pass, the errors δi are computed,

and then back-propagated via (21) to obtain the errors smi. Finally, δi and smi are used to update

the gradient in (19).

There are certain guidelines that are recommended to successfully use neural networks. First,

the starting values are chosen to be random values near zero. Second, it is recommended to use

weight decay to avoid overfitting. It might be useful to scale inputs to have zero mean and standard

deviation one – it ensures that inputs are treated equally in the regularization process and gives

a higher quality prediction. Finally, it is better to have many hidden layers than too few to allow

for model flexibility. Usually the number of hidden layers varies from 5 to 100. Hastie, Tibshirani,

and Friedman (2009) provide a discussion of these guidelines. Finally, we use the R package nnet

to train our neural network.
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B Additional Tables

Table A1: Normalized Differences in the Covariates after Subclassification for Trimmed Sample

Block
Whole 1 2 3 4 5 6 7 8 9 10
Sample

lnMiles 11.06 3.17 1.83 3.21 3.32 0.07 -1.71 -5.35 2.88 2.40 3.64
lnTons 8.21 -3.37 -3.93 -1.87 -0.62 -1.79 0.33 -1.16 -3.82 0.51 -1.24
lnVolTons 14.25 -10.80 -6.07 -4.55 0.76 -2.87 -2.54 -2.40 -4.72 0.18 -0.92
Down 9.04 -5.69 1.87 -2.35 1.29 -3.41 0.93 2.23 -0.29 0.42 -2.00
lnCosts 10.81 2.77 -0.12 2.16 2.43 -0.45 -1.29 -5.60 0.94 1.72 2.80
lnTonsCar 10.40 -0.82 -1.21 -1.20 -1.27 -3.25 -0.38 4.04 -2.23 -1.95 -0.20
HHIorigin -7.20 9.32 4.90 1.79 -1.47 0.98 2.47 2.83 0.44 -0.04 2.96
HHIterm -9.70 2.39 -2.28 0.42 1.79 -6.31 2.75 2.65 -1.72 0.23 4.39
DMorigin -2.61 11.37 4.18 1.97 -1.16 2.10 3.48 2.92 -1.16 0.30 1.25
DMterm -6.71 1.92 -2.01 -4.66 -2.69 -0.68 3.50 1.72 -1.19 1.13 2.84
CalcRate -3.67 2.07 3.11 3.72 4.10 -0.24 1.51 1.83 -1.14 0.21 -0.59
P-Score 100.79 0.18 4.39 1.22 -0.04 -4.24 2.16 -3.36 4.16 1.52 -1.58

Min P-Score 0.027 0.027 0.069 0.129 0.152 0.164 0.232 0.262 0.365 0.419 0.455
Max P-Score 0.938 0.069 0.129 0.152 0.164 0.232 0.262 0.365 0.419 0.455 0.510

# Controls 12,860 2,026 1,174 324 128 436 71 216 210 34 96
# Treated 4,183 45 43 42 31 31 31 47 47 32 31

Block
11 12 13 14 15 16 17 18 19 20

lnMiles 6.90 0.33 2.86 5.95 -0.71 -0.83 -3.92 0.09 -0.68 -0.21
lnTons -0.49 0.91 1.59 2.26 2.86 1.36 3.15 2.83 2.94 9.17
lnVolTons 1.06 0.61 2.45 4.25 1.70 0.16 1.30 3.45 3.27 1.32
Down -2.08 -0.77 -1.72 -2.62 1.27 2.57 6.42 3.16 2.11 0.50
lnCosts 4.48 0.25 2.41 6.54 -0.03 -0.06 -2.61 0.35 -0.22 1.41
lnTonsCar -1.15 1.46 1.35 1.68 4.30 1.72 0.28 2.05 1.94 0.13
DMorigin 0.27 1.75 0.20 -1.63 -1.75 -1.00 -3.96 -2.77 -3.23 -1.17
HHIterm -2.04 -0.28 3.78 5.35 6.31 2.03 1.59 -0.88 0.16 4.71
DMorigin -2.65 0.85 0.36 -1.62 -1.74 -0.70 -3.02 -2.46 -3.23 -1.22
DMterm -2.46 -0.06 3.90 4.10 6.21 2.00 0.74 -1.03 -0.45 0.16
CalcRate -2.94 -0.79 -2.03 -1.47 1.42 1.57 2.85 0.60 0.33 -0.72
P-Score 1.02 1.16 0.17 -0.22 -1.51 1.13 0.89 1.04 0.44 -2.15
Min P-Score 0.510 0.547 0.565 0.592 0.612 0.641 0.672 0.758 0.865 0.922
Max P-Score 0.547 0.565 0.592 0.612 0.641 0.672 0.758 0.865 0.922 0.938
# Controls 54 52 42 27 31 31 47 52 30 31
# Treated 30 33 63 126 95 30 126 1,044 813 287
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Table A2: Propensity score estimation.

(1)
Treatment

lnMiles -2.594∗∗∗ DMorigin 1.297∗∗∗

(0.319) (0.166)
lnTons -3.061∗∗∗ DMterm -0.230∗

(0.334) (0.094)
lnTonscar 3.448∗∗∗ lnCosts 3.649∗∗∗

(0.640) (0.421)
lnVolTons -0.0646 CalcRate -0.00227

(0.038) (0.083)
DOwn 0.616∗∗∗ Share treatedorigin 14.18∗∗∗

(0.112) (0.598)
HHIorigin -3.346∗∗∗ Share treatedterm 12.48∗∗∗

(0.350) (0.291)
HHIterm -0.790∗∗∗ Const -16.75∗∗∗

(0.234) (2.731)

N 17,043
Pseudo R2 0.64

Standard errors in parentheses. The model also includes originating railroad

fixed effects, terminating railroad fixed effects, and quarter fixed effects.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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